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Abstract 

Background Although malaria transmission has experienced an overall decline in sub-Saharan Africa, urban malaria 
is now considered an emerging health issue due to rapid and uncontrolled urbanization and the adaptation of vec-
tors to urban environments. Fine-scale hazard and exposure maps are required to support evidence-based policies 
and targeted interventions, but data-driven predictive spatial modelling is hindered by gaps in epidemiological and 
entomological data. A knowledge-based geospatial framework is proposed for mapping the heterogeneity of urban 
malaria hazard and exposure under data scarcity. It builds on proven geospatial methods, implements open-source 
algorithms, and relies heavily on vector ecology knowledge and the involvement of local experts.

Methods A workflow for producing fine-scale maps was systematized, and most processing steps were automated. 
The method was evaluated through its application to the metropolitan area of Dakar, Senegal, where urban transmis-
sion has long been confirmed. Urban malaria exposure was defined as the contact risk between adult Anopheles vec-
tors (the hazard) and urban population and accounted for socioeconomic vulnerability by including the dimension 
of urban deprivation that is reflected in the morphology of the built-up fabric. Larval habitat suitability was mapped 
through a deductive geospatial approach involving the participation of experts with a strong background in vec-
tor ecology and validated with existing geolocated entomological data. Adult vector habitat suitability was derived 
through a similar process, based on dispersal from suitable breeding site locations. The resulting hazard map was 
combined with a population density map to generate a gridded urban malaria exposure map at a spatial resolution of 
100 m.

Results The identification of key criteria influencing vector habitat suitability, their translation into geospatial layers, 
and the assessment of their relative importance are major outcomes of the study that can serve as a basis for replica-
tion in other sub-Saharan African cities. Quantitative validation of the larval habitat suitability map demonstrates the 
reliable performance of the deductive approach, and the added value of including local vector ecology experts in the 
process. The patterns displayed in the hazard and exposure maps reflect the high degree of heterogeneity that exists 
throughout the city of Dakar and its suburbs, due not only to the influence of environmental factors, but also to urban 
deprivation.

Conclusions This study is an effort to bring geospatial research output closer to effective support tools for local 
stakeholders and decision makers. Its major contributions are the identification of a broad set of criteria related to 
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vector ecology and the systematization of the workflow for producing fine-scale maps. In a context of epidemio-
logical and entomological data scarcity, vector ecology knowledge is key for mapping urban malaria exposure. An 
application of the framework to Dakar showed its potential in this regard. Fine-grained heterogeneity was revealed 
by the output maps, and besides the influence of environmental factors, the strong links between urban malaria and 
deprivation were also highlighted.

Keywords Urban malaria, Vector ecology, Vector habitat suitability, Malaria exposure, Framework, Sub-Saharan Africa, 
Spatial analysis, Earth observation

Background
Malaria is a major public health problem across sub-
Saharan Africa (SSA), and a great variety of spatial meth-
ods are being developed for mapping its transmission risk 
at different scales, ranging from global [1] to sub-national 
and local levels [2]. With the rapid pace of urbanization 
in SSA and the ongoing adaptation of malaria vectors to 
urban environments, there is a growing need for finer 
granularity in urban malaria exposure mapping, account-
ing for the influence of urban complexity and heterogene-
ity [3–7]. Although urban environments are considered 
to be less favourable to most dominant malaria vectors 
than rural areas, it is known that malaria transmission 
occurs across several urban and peri-urban sub-Saharan 
settings, often around and in the vicinity of breeding sites 
[8–11]. In such low transmission intensity settings, spa-
tially-explicit methods relying on vector ecology and on 
the study of vector habitat suitability determinants can 
thus be a good complement to methods based on spatial 
epidemiology to better understand the spatial distribu-
tion of malaria transmission risk [12].

Species distribution models (SDMs), also known as 
ecological niche models (ENMs), use algorithms to make 
spatial predictions of species based on species location 
data and a set of spatial abiotic and/or biotic covariates. 
They cover a variety of methods, among which the well-
established maximum entropy (MaxEnt) and general-
ized additive models, along with more recent machine 
learning-based models [13, 14]. SDMs are being applied 
to mosquitoes worldwide, including in Africa, with 
Kenya and Tanzania being the most covered countries 
in SSA [15]. However, most existing SDM-based stud-
ies involving malaria vectors were conducted in rural 
settings and/or at a coarse scale [15–19], while very few 
addressed fine-scale modelling in urban areas [20–23] 
where more research on mosquito habitat is dedicated to 
Aedes aegypti, the vector of dengue, zika and chikungu-
nya viruses. As routine entomological surveillance is not 
generalized, there is a dearth of spatial data on malaria 
vector presence and abundance in urban settings both 
at the larval and adult stages, which may partly explain 
the paucity of studies [24]. Yet, taking certain methodo-
logical requirements into account (e.g., similar ecological 

conditions, selection of suitable predictor types), the 
missing data issue could be circumvented through the 
development of spatially transferable SDMs trained on 
areas for which data are available [25]. Another conceiva-
ble way of addressing this issue is to focus on knowledge-
driven deductive approaches that are underpinned by 
vector ecology knowledge and imply the involvement of 
local stakeholders [26].

This study relies on vector ecology knowledge and 
proposes a geospatial framework for fine-grained map-
ping of urban malaria exposure, as a combination of 
hazard and population. Hazardous areas are defined as 
areas with suitable habitat conditions for the adult vec-
tor Anopheles gambiae, and the exposed population is 
the people living in these areas. While it is not possible 
to derive all the dimensions of socioeconomic vulner-
ability from Earth Observation (EO) without ancillary 
data, urban morphological deprivation is used as a 
proxy, i.e., the dimension of deprivation that is reflected 
in morphological/physical characteristics of the urban 
fabric [27]. An extensive list of habitat suitability crite-
ria is provided for SSA in general, along with specific 
information relating to Dakar, and the correspond-
ing geospatial layers/proxies that can be derived from 
very-high resolution (VHR) satellite imagery. Alterna-
tive open products that could replace VHR products in 
applications where cost reduction is a priority are sug-
gested, although their use would involve several limi-
tations. The proposed framework is an effort towards 
methods that have a potential for sustainable impact. 
It can be implemented in data-scarce settings with free 
open-source software (FOSS), and it employs simple 
geospatial modelling techniques that do not require 
advanced geostatistical training, which facilitates their 
interpretation by non-specialists. The baseline can be 
adapted to local specificities through the active involve-
ment of local stakeholders, experts, and/or decision 
makers. The workflow is evaluated through an applica-
tion to the metropolitan area of Dakar, Senegal, using 
layers derived from VHR satellite imagery and open 
geospatial data. The output of larval habitat suitabil-
ity modelling is validated with existing entomological 
survey data [28], and the hazard and exposure maps 
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are assessed by local experts. Processing is carried out 
using mostly GRASS GIS [29] and R [30] functions, 
and the web-based computational environment Jupyter 
Notebook [31].

In SSA, most malaria-related deaths are caused by 
P. falciparum which is mostly transmitted by Anoph-
eles gambiae [9]. Therefore, understanding the breed-
ing, resting, and feeding patterns of this major malaria 
vector and including their determinants in the pro-
cess is essential. The graphic illustration of the vec-
tor life cycle presented in Fig.  1 summarizes these 
patterns. The cycle consists of four stages: egg, larva, 
pupa, and adult. The first three stages are aquatic and 
last 5–14  days depending on the temperature. After 
emergence, both male and female mosquitoes seek a 
nectar meal to replenish their energy reserve. Follow-
ing mating (24–48  h after emergence), females seek a 
blood meal source. After the blood meal, and after rest-
ing during the digestion of the blood, the females seek 
a suitable breeding site where to lay eggs. After ovi-
position, the females seek a blood meal source again 
and the cycle is repeated. The time between two blood 
meals (i.e., the gonotrophic cycle) is shorter if the dis-
tance between dwellings and breeding sites is short. 
Adult female Anopheles responsible for malaria trans-
mission generally do not live more than 3 weeks under 
natural conditions, depending on the environment [32]. 
Their malaria transmission potential is linked to their 

longevity, as only older females are likely to transmit 
the parasite P. falciparum. [33]

Methods
Study area and data
The Dakar metropolitan area, Senegal, was selected as a 
case study for testing the framework. In Dakar, where the 
main vector is An. arabiensis (a member of the complex 
An. gambiae s.l.), malaria transmission is low, spatially 
heterogeneous, and highly focal [10, 34]. Urban transmis-
sion has long been studied and demonstrated, in the city 
centre [35, 36] as well as in the suburbs that are prone 
to flooding due to a shallow water table and unplanned 
urbanization in the lowlands [28]. The hot, wet season 
spans from June to November, and the cool, dry sea-
son from December to May. The area of interest (AOI) 
includes the departments of Dakar, Guediawaye and 
Pikine, and part of the department of Rufisque (Fig.  2). 
The spatial extent of the output maps is limited to the 
extent that is common to all input layers.

The image used is a Pléiades pan-sharpened tri-
stereo triplet acquired during the hot, wet season of 
2015, with a spatial resolution of 0.5  m, and a set of 
already existing layers derived from it: (i) a digital ter-
rain model (DTM) resampled to 5  m; (ii) a land-cover 
(LC) map (0.5 m) produced through a semi-automated 
open-source processing chain for object-based image 
analysis and supervised machine learning classification 
[37, 38]; (iii) a map of the dominant land use (LU) at the 

Fig. 1 Anopheles life cycle, adapted from [33]
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street-block level [39]; and (iv) a 100 m ×100 m gridded 
map of population distribution, predicted by top-down 
dasymetric redistribution of census population data 
[40]. The land-cover, land-use and population maps 
are available from the Zenodo scientific repository 
[40–42]. Besides, an open access layer of soil properties 
was also used, namely the open iSDAsoil layer of soil 
pH in Africa, predicted at 30 m resolution, at a depth of 
0–20 cm [43].

The entomological data used for validating the larval 
habitat suitability map were collected for a study aim-
ing to locate and characterize anopheline larval habitats 
in the Dakar suburbs [28]. During the 2013 rainy season, 
908 water bodies were surveyed and geolocated with 
GPS, among which 575 were positive for anopheline lar-
vae. Thirteen types of water bodies were included: basins, 
canals, market-garden wells, puddles, lakes, flooded 
abandoned houses, ponds, backwaters, wells, ravines, 
drain channels, streams, and holes. Anopheline larvae 
were found in 63% of them, and all water body types 
hosted larvae to some extent. Here, only the positive 
samples are considered.

General framework
A geospatial framework is proposed for modelling urban 
malaria exposure (Fig.   3), defined as the contact risk 
between adult vector Anopheles gambiae (i.e., the haz-
ard) and human population. A single dimension of vul-
nerability is included, namely morphological deprivation. 
Considering entomological data scarcity in sub-Saharan 
African cities, a deductive spatially-explicit multi-criteria 
decision analysis (MCDA) [44] is implemented for map-
ping vector habitat suitability, relying on the Analytical 
Hierarchy Process (AHP) [45]. Spatially explicit MCDA 
is recognized as a powerful tool with great potential for 
supporting decision-making in public health [26]. This 
type of analysis does not require the use of species pres-
ence data for training the model. Such data are used only 
for validation purposes if availability permits. Another 
advantage of AHP is that it allows for the active involve-
ment of multiple stakeholders, experts and/or decision 
makers who can make their voices heard. Ensuring that 
their input is accounted for in the analysis and that the 
process is overall interpretable is likely to favour accept-
ance and uptake of the method [26]. The first step in this 

CRS: EPSG 32628

Departments
Area of Interest
Extent of surveyed areas
Extent of the output maps
Presence of anopheline larvae

Fig. 2 Overview of the area of interest in the Dakar metropolitan area, and larvae presence points. Base layer: Pléiades 0.5 m natural colour 
composite ©CNES (2015), Distribution AIRBUS DS.
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type of analysis, once the problem and stakeholders have 
been determined, is the identification of criteria that are 
of two types, i.e., factors influencing habitat suitabil-
ity, and Boolean constraints used for masking out areas 
that must be excluded. After creating the factor and con-
straint layers, factor layers are scaled and weighted before 
being aggregated along with constraints into a habitat 
suitability map. The workflow is detailed in the next sub-
sections. Most steps were automated through the devel-
opment of a processing chain that relies on open-source 
software. MCDA processing was carried out at a resolu-
tion of 5  m and the final output gridded maps (hazard, 
population and exposure) have a resolution of 100 m.

Hazard–a/Larval habitat suitability
Identifying a set of criteria (factors and constraints), 
and obtaining or producing the corresponding geospatial 
layers
The first step for mapping hazard is the prediction of 
larval habitat suitability. The main criteria that influ-
ence habitat suitability of the main urban malaria vector 
in sub-Saharan Africa (i.e., An. gambiae) were identified 
based on literature and local expert knowledge. The iden-
tification of criteria and their translation into geospatial 
layers for locating sites conducive to vector breeding are 

the foundation of this analysis. The fine-scale heteroge-
neity of urban malaria requires going beyond determi-
nants typically used for mapping malaria exposure over 
large zones, e.g., in rural areas. A relevant selection was 
made in this respect, also ensuring that producing or 
obtaining the necessary geospatial data with a sufficient 
level of detail is reasonably feasible. Eight layers were 
used to represent the main factors (Fig. 4, and Tables 1, 
2, 3, 4), namely (i) a land-cover map (categorical), (ii) a 
land-use map (categorical), (iii) a landform map (cat-
egorical), (iv) the topographic wetness index (TWI) as 
a steady-state proxy for soil moisture (continuous), (v) 
the distance to buildings (continuous), (vi) the distance 
to trees (continuous), (vii) the distance to dumpsites as a 
proxy for water pollution (continuous), and (viii) the soil 
pH (continuous). These layers, except for soil pH, are all 
derived from Pléiades imagery. The existing land-cover 
layer was adapted to the needs of the analysis by merg-
ing the classes low buildings and medium and high-rise 
buildings into a single class buildings, splitting the class 
water bodies into small water bodies, medium water bod-
ies, large water bodies, water courses (using OpenStreet-
Map [46] data as ancillary information), and marine 
waters (based on local expert knowledge), splitting the 
class low vegetation into grass and scrub/shrub employing 

Weighted sum of factors
(* product of constraints)

Gridded
population 

density map

Binning

Gridded
population 

density map
(classes)

Obtaining/producing criteria
(geospatial layers)

Identifying criteria
(factors and constraints)

Scaling factors

Weighting factors

Aggregating criteria

Aggregating to grid

Criteria set

HSI map

AHP – Expert knowledge

VIF

Expert knowledge
Literature

Expert knowledge
In situ data (survey) Verifying/validating

Binning

Normalization
Membership functions

AHP – Expert knowledge

Gridded
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ONE DIMENSION OF 
VULNERABILITY

Scaling

Fig. 3 Geospatial framework for mapping urban malaria exposure (i.e., contact risk between vectors and human population)
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a metric of homogeneity calculated from the Pleiades 
near-infrared band (i.e., GLCM homogeneity, 11 ×11 
pixels), and adding a class dumpsites containing the only 
large landfill of the city (extracted from OpenStreetMap 
data). The existing land-use layer was used without any 
adaptation. Landforms were computed from the exist-
ing Pléiades DTM using Geomorphons, a machine vision 
approach that uses ternary patterns [47]. The two main 
parameters, namely the outer search radius and flatness 
threshold, were set heuristically by testing a range of 
values and checking the result over a part of the area of 
interest where the relief is marked. SAGA GIS was uti-
lised for producing TWI as it offers a broader choice of 
algorithms than GRASS GIS for this purpose. The guide-
lines proposed in a study that assesses the effects of dif-
ferent algorithms on the relation between TWI and soil 
moisture were followed [48]. DTM sinks were filled with 
the Fill Sinks XXL algorithm, flow accumulation was 
computed with the Multiple-flow algorithm, slope gra-
dient with the Haralick (10 parameters) algorithm, and 
TWI with the Standard method, with cell size area con-
version (pseudo specific catchment area). Three distance 
layers (distance to buildings, distance to trees, distance to 
dumpsites) were produced from the corresponding land-
cover classes. For soil pH, no processing was necessary as 
the open iSDAsoil layer was used. Factor multicollinear-
ity was assessed with the Variance Inflation Factor (VIF) 
for avoiding redundancy. VIF ranges from 1 upwards. A 
value of 1 for a factor can be interpreted as an absence of 
correlation with the other factors, values between 1 and 

5 as low to moderate correlation with at least one other 
factor, and values greater than 5 as high correlation with 
at least one other factor.    

Since processing satellite imagery for producing spa-
tially explicit criteria may not be an option in some appli-
cations, alternative existing open products are suggested, 
although they currently have a coarser spatial resolution 
than those used in this study (as far as rasters are con-
cerned): Open Buildings [49], Esri 2020 Land Cover 
(10  m) [50], WorldCover (10  m) [51], WUDAPT LCZ 
(100  m) [52], SRTM (~ 30  m) [53], Global SRTM Land-
forms (90 m) [54], and Global SRTM mTPI (270 m) [54]. 
The suggested replacements are detailed in Tables 1, 2, 3, 
4, 5, 6, 7.

Using coarser products as input implies several limi-
tations, including the fact that small features cannot 
be accounted for as they are absent from these open 
products.

Several identified suitability criteria were excluded from 
the study, either due to the high cost of the data sources 
involved (e.g., LiDAR, hyperspectral imagery), their lim-
ited geographic coverage (e.g., drone imagery), the com-
plexity of the modelling processes involved for obtaining a 
sufficient level of detail (e.g., urban meteorological deter-
minants such as air temperature, wind speed, precipita-
tion, and relative humidity), or the lack of in situ data for 
calibration (e.g., surface water parameters). They are listed 
in Additional file  1: Table  S1 as they could prove usable 
in future work due to advances in Earth Observation and 
increased availability of open big data. Moreover, absolute 
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elevation is not accounted for in the selected case study as 
it is unlikely to have an influence on vector habitat suitabil-
ity, Dakar being a coastal city with an overall low elevation.

Boolean constraints were created from the land-cover 
classes buildings, paved surfaces, trees, water courses, 
marine waters and for a narrow strip along the coastline 
that includes highly unsuitable features such as beaches 
and rocks.

Scaling factors
Since factors are different in nature, it is necessary to nor-
malize them to a common scale of values ranging, e.g., 
from 0 (least suitable) to 100 (most suitable) before aggre-
gating them. The continuous factors TWI and soil pH were 
rescaled by min–max normalization, and linear member-
ship functions were applied to the distance to buildings, 
distance to trees and distance to dumpsites. In MCDA 
applications, scaling criteria using membership functions is 
a common procedure aiming at reflecting human thought 
that is able to deal with fuzziness [86]. In fuzzy set theory, 
real numbers can be mapped to a membership degree in 
some fuzzy set using a parametric function (e.g., a trap-
ezoidal function). Here, membership functions attempt 
to capture the fuzziness (or imprecision) of judgements 
concerning the variation in criteria score that occurs as 
the distance from objects of interest (e.g., buildings, trees, 
dumpsites) increases. Categorical factors were rescaled 
through AHP. Five experts with a strong background in 
vector ecology filled out pairwise comparison matrices 
(PCMs) using Saaty’s fundamental rating scale [87] (Fig. 5) 
for comparing sub-factors in terms of suitability, i.e., each 
land-cover class to other land-cover classes, each land-use 
class to other land use classes, and each landform to other 
landforms.

In the first iteration, the experts filled out PCMs following 
their individual judgements, without consulting their pairs. 
The consistency of expert judgements was assessed by com-
puting the Consistency Ratio (CR) of each PCM [88]. CR is 
based on the calculation of a Consistency Index (CI)

where �max is the principal eigenvalue of the positive 
reciprocal matrix, and n is the number of factors. CR 
is the ratio of CI to a Random Index (RI) available from 

(1)CI =
�max − n

n− 1

literature that was derived from a large set of random 
PCMs

As a rule of thumb, matrices with CR > 0.10 (i.e., more 
than 10% as inconsistent as a random matrix) are consid-
ered too inconsistent for AHP. However, previous studies 
have highlighted the difficulty to reach such low values in 
practical applications, in particular for large PCMs [89]. 
Moreover, while an elevated level of consistency is desir-
able, it is also important to respect expert judgements and, 
therefore, to adapt consistency cut-off values to a level that 
is deemed acceptable for the study. Here, a second itera-
tion was necessary, to provide some of the experts with 
the opportunity to revise their judgements in PCMs with 
CR > 0.15 (CR > 0.20 for the large land-cover PCM with 14 
sub-factors) and reaching an acceptable level of consist-
ency. As experts filled out PCMs without consulting their 
pairs, they functioned as individuals and not as a group. In 
this case, the aggregation of experts’ opinions is obtained 
by Aggregation of Individual Priorities (AIP), as opposed 
to Aggregation of Individual Judgements (AIJ) [90]. AIP 
can be achieved by calculating their weighted geometric 
mean (WGM) to obtain a representative priority vector 
(i.e., the weight vector) for each PCM [91]. The importance 
assigned to each expert can also be weighted according to 
their level of expertise. However, since experts who con-
tributed all have a broad expertise and excellent knowl-
edge of the AOI, their judgements were considered equally 
important and received equal weights.

Weighting factors
Two factor weighting scenarios were considered and 
compared for assessing the merit of local expert knowl-
edge and knowledge derived from literature, respectively. 
In the first scenario, AHP was implemented for deriving 
the relative importance of the factors, as described above. 
In the second scenario, the weights were derived by an 
EO scientist based on a literature review, following the 
same approach.

Aggregating criteria
For each scenario, two HSI maps were produced, the first 
by calculating the weighted sum of factors

(2)CR =
CI

RI

1/9 1/7 1/5 1/3 1 3 5 7 9
Extremely
less suitable

Very 
strongly
less suitable

Strongly
less suitable

Moderately 
less suitable

Equally 
suitable

Moderately 
more 
suitable

Strongly
more 
suitable

Very 
strongly
more 
suitable

Extremely
more 
suitable

Fig. 5 Saaty’s fundamental rating scale
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where wi are the factor weights and xi are the factor 
scores, and the second by multiplying the weighted sum 
of factors by the product of Boolean constraints

where cj are the Boolean constraints.

Aggregating HSI to grids and validating the gridded maps
The HSI maps were validated using the 575 samples posi-
tive for anopheline larvae. The validation area was spa-
tially restricted to the part of the metropolitan area where 
the samples were collected. It was delineated by perform-
ing a spatial clustering of the sampling points, calculat-
ing a concave hull around the 2 resulting point clusters, 
and adding a 100-m buffer to include the sampling points 
located on the hull outlines. Inaccessible areas where no 
sampling could be organized were excluded, e.g., large 
water bodies. Validation was conducted based on mean 
HSI calculated in grid cells of increasing sizes (15  m, 
25 m, 45 m, 95 m, i.e., from the smallest possible aggre-
gation (3 ×3 pixels) to about 1 ha) to evaluate how spa-
tial uncertainties (such as the precision of survey points’ 
coordinates) affect the accuracy of fine-grained predic-
tions, and what would be a suitable aggregation level for 
the output gridded map. Accuracy was assessed by com-
puting the Continuous Boyce Index (CBI) [92, 93] with 
the ecospat.boyce function included in the R Ecospat 
package [94]. CBI requires observed presence only and 
assesses to what extent model predictions differ from a 
random distribution of observed presence data across the 
prediction gradient. It was proved to be a reliable accu-
racy measure of presence-only predictions, and previous 
study showed that it outperforms other evaluators [93]. 
It takes as input on one hand all predicted suitability val-
ues, and on the other hand predicted suitability values at 
presence records. CBI score varies between -1 and 1, with 
negative values indicating a poorly performing model, 
values close to 0 implying similarity to a random model, 
and positive values increasing with the model’s ability to 
output predictions consistent with the observed presence 
data. The ecospat.boyce function also outputs the F-ratio 
that is the ratio of Predicted frequency (P) to Expected 
frequency (E), allowing to plot the P/E curve as a func-
tion of HSI. The second indicator of model performance 
is the shape of the P/E curve. It complements CBI score, 
as the latter is not affected by curve shape as long as the 
curve is monotonically increasing, whereas any diver-
gence from the straight line reveals a lowered ability to 
distinguish different suitability classes.

(3)HSI = �n
i=1(wixi)

(4)HSI = �n
i=1(wixi) ∗�

m
j=1cj

Classifying HSI into suitability classes
Providing a map with continuous HSI values to end-users 
could give them a spurious impression of precision and 
be misleading. Therefore, the best map of continuous 
HSI values was converted into a map with four suitabil-
ity classes: unsuitable, marginal, suitable and optimal, 
following the method proposed by [93] that relies on the 
examination of the P/E curve.

Hazard–b/Adult vector habitat suitability
Identifying a set of criteria (factors and constraints), 
and obtaining or producing the corresponding geospatial 
layers
A similar approach was adopted for mapping adult habi-
tat suitability, drawing from literature and expert knowl-
edge to select the criteria, and considering the feasibility 
of obtaining or creating the corresponding spatial lay-
ers. In urban areas, the dispersal range of adult vec-
tors around breeding sites is short (up to a few hundred 
meters [8, 33, 64]), as human hosts are widely available 
for blood meals. Therefore, the first factor is the distance 
to larval habitats, as extracted from the best larval habi-
tat suitability map in terms of CBI score. Two layers were 
created, i.e., the distance to optimal larval habitats, and 
the distance to suitable and optimal larval habitats. The 
second factor is the distance to buildings, as a proxy for 
distance to human hosts. The third factor is the land 
cover, for which the same layer as for larval habitats 
was used, with different adaptations. Buildings were not 
merged into a single class, as low buildings (as a proxy 
for poorly built dwellings) are more likely to indicate a 
lower socioeconomic status and are more prone to open-
ings that could let mosquitoes in, thus providing poten-
tial feeding and resting opportunities. Trees and shrub/
scrub were merged into a single class of leafy vegetation 
potentially providing suitable sites for mosquitoes rest-
ing outside. Water bodies were also merged into a single 
class as they are considered mostly unsuitable habitats 
for adult vectors. The fourth factor is the land use, and 
it did not require adaptations. The factors are presented 
in Tables  5, 6, 7. No constraints were considered in the 
analysis of adult habitat suitability for excluding areas. 
The suggested alternative open products are the same 
as for larval habitat suitability, and include in addition 
WSF3D [95] that estimates average building height in 
90 m × 90 m grid cells.

Scaling factors
The distance to suitable larval habitats was scaled using a 
membership function derived from a study where adult 
vector density in dwellings was calculated for 7 distance 
intervals along a transect of 910 m starting from the edge 
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of a large permanent urban wetland (the Great Niaye of 
Pikine) [36]. The distance to buildings was rescaled with 
a linear function. For categorical factors (land cover and 
land use), the same AHP approach as for larval habitat 
suitability was used.

Weighting factors, aggregating criteria, aggregating HSI 
to grid, verifying, classifying into suitability classes
As for larval habitat suitability, relative factor impor-
tance was assessed by vector ecology experts through 
pairwise comparisons. The HSI map was produced 
from a weighted sum of factors, but Boolean constraints 
were not included. HSI was aggregated to grid cells of 
100  m × 100  m to match the resolution of the human 
population map, and binned into four classes, i.e., unsuit-
able, marginal, suitable, and optimal corresponding to 
hazard levels very low, low, medium, and high, respec-
tively. Due to the unavailability of data on the presence 
of adult vectors having an extensive spatial coverage, the 
output was visually verified by experts having in-depth 
knowledge of the area under study and its entomological 
conditions.

Population and vulnerability
Several global gridded layers of human population dis-
tribution are openly available [105] and can be used for 
mapping human population exposed to the risk of con-
tact with an urban malaria vector. Alternatively, a site-
specific map can be created when demographic data 
and spatial co-variates are available. Here, an existing 
site-specific gridded population map (Fig. 6) was used. It 
was produced by redistributing population counts from 

administrative units in 100 m ×100 m grid cells using a 
top-down dasymetric mapping approach [41]. Popula-
tion density was divided into three classes, i.e., high, 
medium, low. Population values were log-transformed, 
and the class breaks were defined using the standard 
deviation algorithm. Due to overall limited availability of 
timely spatial data on population socioeconomic status, 
mobility, acquired immunity, awareness level, access to 
drugs, use of larvicides and insecticides, use of insecti-
cide-treated bed nets, etc. the inclusion of vulnerability 
dimensions was limited to area-level morphological dep-
rivation. The latter is represented by the land-use class 
deprived urban areas (Fig. 6) that is accounted for in both 
larval and adult habitat suitability mapping. The relation-
ship between urban deprivation and urban malaria risk is 
strong, as highlighted by several authors [106–108]

Urban malaria exposure
The final output is a 100 m × 100 m gridded map of urban 
malaria exposure that results from combining hazard lev-
els with population density classes into a bivariate map. 
Since a single dimension of vulnerability is included in 
the framework, the term ’exposure’ rather than ’risk’ is 
conservatively adopted. The predicted variations in the 
risk of contact between humans and vectors across the 
metropolitan area were visually verified by local experts. 
It is important to consider that the levels of hazard and 
exposure are not absolute but relative. A high level of 
hazard in Dakar, an urban area with low endemicity, does 
not compare to, e.g., a high level of hazard in rural areas 
with high endemicity.  

Table 5 Continuous variables derived from VHR imagery, with suggested open alternatives, and knowledge relating to their influence 
on adult vector habitat suitability (from literature and experts)

Continuous variables from VHR 
imagery

Alternative existing open 
product(s)

Larval habitat suitability—Sub-
Saharan African cities 

Larval habitat suitability—Dakar

Distance to breeding sites (derived 
from larval habitat suitability)

n/a In Africa, the dispersal range of 
Anopheles vectors of malaria from 
their breeding sites is generally 
less than 1 km and rarely exceeds 
2–3 km. In peri-urban/urban areas, 
this range is shorter and will likely 
not exceed a few hundred meters 
when human hosts are available 
nearby for blood meals [8, 33, 64]

There is a high correlation between 
the spatial distribution of adults and 
larvae [34]. Adult vector abundance 
decreases sharply with increasing 
distance from breeding site [10, 36]

Distance to human dwellings 
(proxy: distance to buildings)

Calculate distance to Open Build-
ings

An. arabiensis primarily feeds 
and rests indoors, but due to 
widespread use of Long-Lasting 
Insecticidal Nets (LLINs) and Indoor 
Residual Spraying (IRS), the behav-
iour of this vector becomes more 
flexible, and it also tends to feed 
and rest outdoors [96]

The proximity of breeding sites to 
human dwellings greatly limits the 
spatial dispersion of vectors [28]
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Results
Hazard–a/larval habitat suitability
No factor had to be discarded due to multicollinear-
ity, as VIF was close to 1 for each of them. The scores of 
categorical sub-factors obtained from AHP emphasize 
the high suitability of LC classes small water bodies and 
medium-sized water bodies, LU classes wetlands, agricul-
tural areas and deprived residential areas, and concave 
landforms pits and valleys (Table  8). The membership 
functions used for scaling distance layers are presented 
in Fig. 7. According to scenario 1 (involving five experts), 
the factors with the highest relative importance are soil 
moisture and water pollution, whereas land cover and 
landforms are the highest ranked in scenario 2 (involving 
an EO scientist) (Fig. 8).    

For each scenario, an HSI map was produced and val-
idated using anopheline larvae presence data. Four sur-
vey samples were discarded due to geolocation error, 
leaving 571 usable presence points. The first validation 
step consisted in comparing the CBI scores of both sce-
narios in four cell sizes, using only the weighted sum 
of factors, without Boolean constraints  (Fig.  9). CBI 

scores reached the highest values in small  cells, with 
a sharp decrease as cell size increases (except for sce-
nario 2 at 25 m), which indicates the reliability of fine-
grained larval HSI predictions. The best CBI score 
was obtained by scenario 1 at 15 m (i.e., 3 × 3 pixels), 
confirming that the involvement of local experts is the 
best option for producing accurate fine-grained larval 
HSI maps. Nevertheless, scenario 2 also reaches high 
CBI scores for small cells, peaking at 25 m, which indi-
cates that drawing on literature is a valid alternative in 
the case where it is not possible to involve a panel of 
experts in the analysis.  

The impact of adding constraints was assessed by 
examining the P/E curves. In an ideal model, the P/E 
curve would be linearly increasing, whereas in a random 
model, it would be flat. In actual models, curves may 
exhibit other shapes, as is the case here where they are 
exponential, implying a better discrimination between 
high-suitability habitats than between low-suitability 
habitats. An example is provided in Fig. 10  for scenario 
1 at 15 m, both without and with constraints. It appears 
that constraints mitigate overpredictions in low HSI 

Fig. 6 Population per hectare estimated through dasymetric mapping, and extent of deprived urban areas
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value ranges, and increase the maximum value reached 
by the P/E curve (known as the F-value). The F-value is 
an indicator of deviation from randomness, i.e., an indi-
cator of significance [93]. Similar effects were also gener-
ally observed for the other scenario and cell sizes.

The next step consisted in converting the continuous 
HSI into suitability classes, based on the P/E curve [93]. 
With exponential curves, a broad ‘unsuitable’ category 
can encompass the plateau (P/E < 1), whereas a finer cat-
egorization can be made in the growing part of the curve, 
e.g., ‘marginal’ (plateau around P/E = 1), then ‘suitable’ 

up to a change in slope around P/E = 15, and ‘optimal’ for 
P/E > 15, as shown in. (Fig. 11)

The P/E curves also demonstrate that scenario 1 per-
forms better than scenario 2 for high HSI values. Conse-
quently, the fine-scale map produced from scenario 1 was 
retained to proceed with the analysis. Figure  12  shows 
presence points overlaid on larval habitat suitability. 
Points located close to the edges of suitable areas rather 
than inside them were likely marked on the shores of 
flooded zones. An example of optimal area is shown 
in Fig. 13. 
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Hazard–b/adult vector habitat suitability
The suitability scores of categorical sub-factors (Table 9) con-
firm the strong relationship that exists between urban depri-
vation and malaria hazard, with LC class low buildings and 
LU class deprived residential areas obtaining the highest 
scores. On the other hand, very low scores were obtained 
for paved surfaces, bare soil, and swimming pools for LC, and 
for non-residential built-up areas and non-agricultural areas 
with sparse or no vegetation for LU. More unexpectedly, high-
density planned residential areas are judged more suitable 
than low-density planned residential areas and even agricul-
tural areas. The membership functions for scaling distance 
factors are presented in Fig. 14.

Regarding relative importance, the factor with the 
highest score is by far the distance to breeding sites, fol-
lowed by the distance to buildings (Fig. 15). 

Table 8 Suitability scores of categorical sub-factors for larval habitat suitability

Bold values indicate highly suitable sub-factors

LC classes Score LU classes Score Landforms Score

Buildings 0 High-density planned residential areas 9 Flats 17

Swimming pools 8 Low-density planned residential areas 16 Peaks 0

Paved surface 5 Deprived residential areas 79 Ridges 1

Dumpsites 10 Non-residential built-up areas 0 Shoulders 7

Bare soil 16 Agricultural areas 87 Spurs 7

Grass 19 Non-agricultural vegetated areas 36 Slopes 2

Shrubs 11 Non-agricultural areas with sparse or no veg 31 Pits 100
Trees 5 Wetlands 100 Valleys 70
Small water bodies 100 Footslopes 53

Medium water bodies 88 Hollows 42

Large water bodies 54

Water courses 11

Marine waters 9

Shadow 8

Table 9 Suitability scores of categorical sub-factors for adult vector habitat suitability

Bold values indicate highly suitable sub-factors

LC classes Score LU classes Score

Low buildings (incl. poorly built) 100 High-density planned residential areas 35

Medium and high-rise buildings 39 Low-density planned residential areas 20

Swimming pools 8 Deprived residential areas 100
Paved surface 0 Non-residential built-up areas 0

Dump sites 26 Agricultural areas 29

Bare soil 2 Non-agricultural vegetated areas 17

Grass 35 Non-agricultural areas with sparse or no veg 7

Trees and shrubs 52 Wetlands 30

Water bodies 18

Shadow 18
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Two adult vector habitat suitability maps were pro-
duced, where the suitability classes reflect the hazard 
levels (i.e., unsuitable corresponding to very low hazard, 
marginal to low hazard, suitable to medium hazard, and 
optimal to high hazard). The first map uses the factor 
distance to optimal larval habitats as input (Fig. 16). It is 
more restrictive than the second that uses the factor dis-
tance to suitable and optimal larval habitats (Additional 
file 2 Figure S1). It should be noted that the hazard lev-
els are relative, and specific to the urban context of the 
Dakar metropolitan area that is overall a low transmis-
sion setting. The maps reflect the low dispersal of adult 
vectors from their breeding sites. This phenomenon is 
explained by the proximity of their blood meal source 
[33, 109, 110]. During the field survey in the suburbs 
of Dakar, more than 90% of anophelines’ breeding sites 
were found at a distance smaller than 10 m from human 
dwellings. Moreover, the areas where anopheles mosqui-
toes’ breeding sites were particularly abundant during the 
rainy season were correlated to the presence of flooded 
abandoned houses that served as resting places [28]. 

Urban malaria exposure
The bivariate urban malaria exposure maps resulting 
from a combination of hazard levels with population 
density classes characterize the likelihood of contact 

between adult vectors and humans. Since areas that are 
optimal for adult vector habitat are also generally areas 
that are densely populated, the hazard maps (Fig. 16 and 
Additional file 2 Fig. S1) and the exposure maps (Fig. 17 
and Additional file  2 Fig. S2) display similar patterns. 
The areas that combine high hazard with high popula-
tion density are mostly located in suburbs prone to flood-
ing due to their unfavourable situation in lowlands. This 
finding is consistent with previous epidemiological stud-
ies [77, 111]. In Dakar, 62% of the urban population live 
in the suburbs, thus causing strong demographic pres-
sure associated with uncontrolled urbanization [112]. 
This leads to the proliferation of deprived overcrowded 
neighbourhoods with poor sanitation infrastructures. 
Several areas combining high hazard with medium popu-
lation density are found close to humid zones, e.g., zones 
devoted to market gardening. Previous work in the Dakar 
suburbs has shown the importance of micro-ecological 
conditions, in particular the presence of breeding sites, 
on the intensity of malaria transmission. The risk of being 
bitten by infected Anopheles females was higher in the 
area where the presence of breeding sites was higher [71]. 
Fig. 17 highlights a large area located in Pikine that com-
bines high hazard with high population density. It is the 
least urbanized in terms of infrastructure and actually 
has the highest levels of population density.
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Fig. 11 Suitability class boundaries, set according to the P/E curve. The orange horizontal line indicates the performance of a random model. Top: 
Scenario 1 with constraints (15 m × 15 m). Bottom: Scenario 2 with constraints (15 m × 15 m)
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Discussion
Application
Applying the framework to Dakar using VHR imagery 
resulted in three types of output. The first output is com-
posed of the larval habitat suitability maps at a resolution 
of 5  m that were validated with entomological survey 
data. The results shown in Fig. 12 are consistent with pre-
vious field observations on the distribution of Anopheles 
breeding sites [28]. Indeed, the most suitable areas for 
anophelines breeding sites across the studied urban set-
ting consist of rain-filled shallow water bodies. Moreover, 

the proximity of such stagnant water bodies to densely 
populated areas contribute to the proliferation of ovi-
position sites readily accessible to gravid females of An. 
arabiensis, the main vector of malaria in Dakar [71]. The 
location of breeding sites is also linked to rapid uncon-
trolled anthropisation with inappropriate land use plan-
ning and poor sanitation, another key factor influencing 
the abundance of breeding sites of malaria vectors. Nev-
ertheless, suitable areas were identified not only in the 
flood-prone deprived suburbs but also, to a lesser extent, 
in planned urbanized areas. On the other hand, the low 

Fig. 12 Subset and situation map of larval habitat suitability (5 m), scenario 1 with constraints. The shades of green reflect the different suitability 
classes
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occurrence of anopheline breeding sites in some areas 
could be linked to a soil texture that favours the infiltra-
tion of rainwater, or to improvements of the water drain-
ing system [113, 114] that reduce the number of stagnant 
water bodies. These aspects were not accounted for in 
this study. Puddles likely play the most important role in 
the production of Anopheles larvae. However, identify-
ing every puddle would require the use of images with an 
even finer resolution than Pléiades (e.g., drone imagery), 
and frequent acquisitions to account for rapid changes, 
which seems costly and unrealistic. Instead, a more effec-
tive approach was put forward that uses a conjunction of 
factors for identifying areas that are prone to the forma-
tion of puddles. TWI, as a proxy for soil moisture, and 

Fig. 13 Left: An example of area characterised by optimal larval habitat suitability: highly populated, prone to flooding, with unplanned 
urbanisation and poor sanitation conditions. Right: Typical small breeding sites of An. gambiae s.l 
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concave landforms play an important part in this process. 
Besides, water pollution is also identified as a crucial fac-
tor, although it is known that vectors are adapting to it [9, 
12, 82, 83]. The second output is the adult vector habi-
tat suitability maps at a resolution of 100 m (i.e., the haz-
ard maps) that were verified by experts. The proximity 
of the three essential elements of the gonotrophic cycle, 
namely the breeding sites, the source of blood meals and 
the resting places explain the high habitat suitability, in 
the areas highlighted by the map as hazardous. The dis-
tance to breeding sites is considered the main factor to 
account for in adult vector habitat suitability mapping, 
and the developed approach allows for deriving it from 
suitable larval habitats. The other factors help refine dis-
persal patterns according to the availability of hosts for 
blood meals and resting sites. Low buildings (likely to 
indicate a lower socioeconomic status in Dakar, although 
they could reflect certain types of affluent neighbour-
hoods in other contexts) and deprived urban areas offer 
suitable conditions in this respect. The third output is the 
urban malaria exposure maps at a resolution of 100  m. 
The patterns depicted by both the hazard and exposure 

maps display similarities and are consistent with findings 
of previous epidemiological studies. The proliferation of 
breeding sites increases the probability of high adult vec-
tor densities in their vicinity, which in turn exacerbates 
exposure in areas with high population density and poor 
sanitation.

Limitations of the approach
The approach has some limitations that must be 
acknowledged. First, some of the identified criteria were 
discarded, e.g., those that imply a high production cost, 
or require access to in  situ data, as the aim was to pro-
pose a method that can be replicated in other cities under 
cost and data availability constraints. In addition, a bet-
ter indicator of water pollution than distance to landfills 
should be considered in future studies, to account for 
the influence of household and industrial wastewater. 
Besides, uncertainties are present at several stages of the 
process, starting with the input datasets that are derived 
from modelling. In particular, the weights of factors and 
sub-factors strongly influence the results, and they are 
likely to suffer from inconsistencies. This was mitigated 

CRS: EPSG 32628

Departments

Water bodies

Adult vector habitat suitability
Unsuitable (very-low hazard)

Marginal (low hazard)

Suitable (medium hazard)

Optimal (high hazard)

Fig. 16 Adult vector habitat suitability (i.e, hazard) (100 m), based on distance to larval habitat suitability class “optimal” and other factors
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by collecting multiple judgements from a panel of experts 
and allowing these experts to revise their judgements 
whenever inconsistency exceeded a predetermined 
threshold. The impact of changes in the relative impor-
tance of factors on the result was also tested. In addition 
to thematic uncertainties, spatial uncertainty is also pre-
sent, notably due to the different spatial resolutions of 
the data used. Therefore, discrete 100 m × 100 m gridded 
hazard and exposure maps were produced instead of con-
tinuous maps with a finer resolution, in view of reducing 
both spatial and thematic uncertainty.

Replicability
To facilitate replication, a baseline workflow relying on 
open-source software functions was put forward. Adap-
tations will be required for every future application, 
depending on input data availability and local specifici-
ties. To circumvent the obstacle of VHR satellite imagery 
cost, alternative open data were suggested, although their 
use involves limitations such as the inability to account 
for small features (e.g., small water bodies that are among 

the most important factors), and the missing land use 
classes (e.g., deprived urban areas). In future applica-
tions, the choice between using a mix of data derived 
from satellite imagery and from open data or relying 
entirely on open data will depend on the level of detail 
that needs to be attained, as well as on the budget and 
EO skills at hand. With the current rapid increase in the 
availability of broad-coverage geospatial datasets, the 
need for pre-processing and processing of EO data is 
expected to diminish, as finer-scale readily usable open 
data covering a variety of themes continue to be released. 
The main bottleneck is the limited availability of accurate 
and timely spatial data on urban deprivation. Neverthe-
less, research is underway in this field and it is likely that 
such data will be made available in the near future [115].

Perspectives
Perspectives for future research include testing the work-
flow using only open data and testing the replicability 
of the approach in other cities having a different profile, 

CRS: EPSG 32628

 Very low or low hazard      

Departments
Water bodies

Medium hazard - Low population density
Medium hazard - Medium population density
Medium hazard - High population density
High hazard - Low population density
High hazard - Medium population density
High hazard - High population density

Fig. 17 Urban malaria exposure (100 m), based on adult habitat suitability derived from the larval habitat suitability class “optimal” and other 
factors. Areas of very low to low hazard are not emphasized
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more particularly secondary cities and cities located in 
different climate zones. Scalability should also be inves-
tigated, e.g., using cloud computing platforms such as 
Google Earth Engine or Microsoft’s Planetary Computer. 
Adding temporal moisture indices, e.g., from Senti-
nel-1/2, as a complement to steady-state TWI may also 
be beneficial for adjusting the results according to sea-
sonal variations. Subject to data availability, more dimen-
sions could be included in the vulnerability component, 
such as immunity, behaviour, movements, and proper use 
of Long-Lasting Insecticidal Nets (LLINs). Furthermore, 
since policies are being established for more systematic 
collection of epidemiological data in the future, a com-
bination of methods based on vector ecology knowledge 
with methods implementing fine-grained spatial epide-
miological modelling [4] may prove essential to support 
evidence-based urban malaria control.

Conclusions
In an effort to bring geospatial research output closer to 
effective support tools for evidence-based policies and 
targeted interventions, a spatially explicit approach was 
developed and systematized for mapping urban malaria 
exposure in a context of epidemiological and entomo-
logical data scarcity. While it relies on well-established 
methods, its novelty resides in (i) the key role played by 
expert knowledge in vector ecology, (ii) the broad set of 
criteria identified and used, (iii) the fact that hazard is 
not directly derived from larval habitat suitability but 
from adult vector habitat suitability, (iv) the inclusion 
of urban deprivation as a proxy for vulnerability, and (v) 
the fine spatial resolution of the results, as required to 
account for the high degree of heterogeneity observed 
in urban areas. The application of this approach to a 
case study demonstrated its potential for sub-Saharan 
African cities and highlighted that in addition to the 
influence of environmental factors, urban deprivation 
also plays an influential role in urban malaria exposure. 
A baseline workflow for favouring further applications 
was proposed, and as the recent trend in fast-increas-
ing availability of open, broad coverage, ready-to-use 
spatial layers derived from EO is expected to continue, 
it will contribute to reduce the need for EO data pro-
cessing. Last but not least, building or strengthening 
the capacities of local actors in geospatial methods is 
essential to foster the sustainable uptake of approaches 
such as the one developed in this study.
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