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Fine-scale mapping of urban malaria i

exposure under data scarcity: an approach
centred on vector ecology
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Abstract

Background Although malaria transmission has experienced an overall decline in sub-Saharan Africa, urban malaria
is now considered an emerging health issue due to rapid and uncontrolled urbanization and the adaptation of vec-
tors to urban environments. Fine-scale hazard and exposure maps are required to support evidence-based policies
and targeted interventions, but data-driven predictive spatial modelling is hindered by gaps in epidemiological and
entomological data. A knowledge-based geospatial framework is proposed for mapping the heterogeneity of urban
malaria hazard and exposure under data scarcity. It builds on proven geospatial methods, implements open-source
algorithms, and relies heavily on vector ecology knowledge and the involvement of local experts.

Methods A workflow for producing fine-scale maps was systematized, and most processing steps were automated.
The method was evaluated through its application to the metropolitan area of Dakar, Senegal, where urban transmis-
sion has long been confirmed. Urban malaria exposure was defined as the contact risk between adult Anopheles vec-
tors (the hazard) and urban population and accounted for socioeconomic vulnerability by including the dimension

of urban deprivation that is reflected in the morphology of the built-up fabric. Larval habitat suitability was mapped
through a deductive geospatial approach involving the participation of experts with a strong background in vec-

tor ecology and validated with existing geolocated entomological data. Adult vector habitat suitability was derived
through a similar process, based on dispersal from suitable breeding site locations. The resulting hazard map was
combined with a population density map to generate a gridded urban malaria exposure map at a spatial resolution of
100 m.

Results The identification of key criteria influencing vector habitat suitability, their translation into geospatial layers,
and the assessment of their relative importance are major outcomes of the study that can serve as a basis for replica-
tion in other sub-Saharan African cities. Quantitative validation of the larval habitat suitability map demonstrates the
reliable performance of the deductive approach, and the added value of including local vector ecology experts in the
process. The patterns displayed in the hazard and exposure maps reflect the high degree of heterogeneity that exists
throughout the city of Dakar and its suburbs, due not only to the influence of environmental factors, but also to urban
deprivation.

Conclusions This study is an effort to bring geospatial research output closer to effective support tools for local
stakeholders and decision makers. Its major contributions are the identification of a broad set of criteria related to
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deprivation were also highlighted.

Spatial analysis, Earth observation

vector ecology and the systematization of the workflow for producing fine-scale maps. In a context of epidemio-
logical and entomological data scarcity, vector ecology knowledge is key for mapping urban malaria exposure. An
application of the framework to Dakar showed its potential in this regard. Fine-grained heterogeneity was revealed
by the output maps, and besides the influence of environmental factors, the strong links between urban malaria and

Keywords Urban malaria, Vector ecology, Vector habitat suitability, Malaria exposure, Framework, Sub-Saharan Africa,

Background

Malaria is a major public health problem across sub-
Saharan Africa (SSA), and a great variety of spatial meth-
ods are being developed for mapping its transmission risk
at different scales, ranging from global [1] to sub-national
and local levels [2]. With the rapid pace of urbanization
in SSA and the ongoing adaptation of malaria vectors to
urban environments, there is a growing need for finer
granularity in urban malaria exposure mapping, account-
ing for the influence of urban complexity and heterogene-
ity [3-7]. Although urban environments are considered
to be less favourable to most dominant malaria vectors
than rural areas, it is known that malaria transmission
occurs across several urban and peri-urban sub-Saharan
settings, often around and in the vicinity of breeding sites
[8-11]. In such low transmission intensity settings, spa-
tially-explicit methods relying on vector ecology and on
the study of vector habitat suitability determinants can
thus be a good complement to methods based on spatial
epidemiology to better understand the spatial distribu-
tion of malaria transmission risk [12].

Species distribution models (SDMs), also known as
ecological niche models (ENMs), use algorithms to make
spatial predictions of species based on species location
data and a set of spatial abiotic and/or biotic covariates.
They cover a variety of methods, among which the well-
established maximum entropy (MaxEnt) and general-
ized additive models, along with more recent machine
learning-based models [13, 14]. SDMs are being applied
to mosquitoes worldwide, including in Africa, with
Kenya and Tanzania being the most covered countries
in SSA [15]. However, most existing SDM-based stud-
ies involving malaria vectors were conducted in rural
settings and/or at a coarse scale [15-19], while very few
addressed fine-scale modelling in urban areas [20-23]
where more research on mosquito habitat is dedicated to
Aedes aegypti, the vector of dengue, zika and chikungu-
nya viruses. As routine entomological surveillance is not
generalized, there is a dearth of spatial data on malaria
vector presence and abundance in urban settings both
at the larval and adult stages, which may partly explain
the paucity of studies [24]. Yet, taking certain methodo-
logical requirements into account (e.g., similar ecological

conditions, selection of suitable predictor types), the
missing data issue could be circumvented through the
development of spatially transferable SDMs trained on
areas for which data are available [25]. Another conceiva-
ble way of addressing this issue is to focus on knowledge-
driven deductive approaches that are underpinned by
vector ecology knowledge and imply the involvement of
local stakeholders [26].

This study relies on vector ecology knowledge and
proposes a geospatial framework for fine-grained map-
ping of urban malaria exposure, as a combination of
hazard and population. Hazardous areas are defined as
areas with suitable habitat conditions for the adult vec-
tor Anopheles gambiae, and the exposed population is
the people living in these areas. While it is not possible
to derive all the dimensions of socioeconomic vulner-
ability from Earth Observation (EO) without ancillary
data, urban morphological deprivation is used as a
proxy, i.e., the dimension of deprivation that is reflected
in morphological/physical characteristics of the urban
fabric [27]. An extensive list of habitat suitability crite-
ria is provided for SSA in general, along with specific
information relating to Dakar, and the correspond-
ing geospatial layers/proxies that can be derived from
very-high resolution (VHR) satellite imagery. Alterna-
tive open products that could replace VHR products in
applications where cost reduction is a priority are sug-
gested, although their use would involve several limi-
tations. The proposed framework is an effort towards
methods that have a potential for sustainable impact.
It can be implemented in data-scarce settings with free
open-source software (FOSS), and it employs simple
geospatial modelling techniques that do not require
advanced geostatistical training, which facilitates their
interpretation by non-specialists. The baseline can be
adapted to local specificities through the active involve-
ment of local stakeholders, experts, and/or decision
makers. The workflow is evaluated through an applica-
tion to the metropolitan area of Dakar, Senegal, using
layers derived from VHR satellite imagery and open
geospatial data. The output of larval habitat suitabil-
ity modelling is validated with existing entomological
survey data [28], and the hazard and exposure maps
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are assessed by local experts. Processing is carried out
using mostly GRASS GIS [29] and R [30] functions,
and the web-based computational environment Jupyter
Notebook [31].

In SSA, most malaria-related deaths are caused by
P falciparum which is mostly transmitted by Anoph-
eles gambiae [9]. Therefore, understanding the breed-
ing, resting, and feeding patterns of this major malaria
vector and including their determinants in the pro-
cess is essential. The graphic illustration of the vec-
tor life cycle presented in Fig. 1 summarizes these
patterns. The cycle consists of four stages: egg, larva,
pupa, and adult. The first three stages are aquatic and
last 5-14 days depending on the temperature. After
emergence, both male and female mosquitoes seek a
nectar meal to replenish their energy reserve. Follow-
ing mating (24—48 h after emergence), females seek a
blood meal source. After the blood meal, and after rest-
ing during the digestion of the blood, the females seek
a suitable breeding site where to lay eggs. After ovi-
position, the females seek a blood meal source again
and the cycle is repeated. The time between two blood
meals (i.e., the gonotrophic cycle) is shorter if the dis-
tance between dwellings and breeding sites is short.
Adult female Anopheles responsible for malaria trans-
mission generally do not live more than 3 weeks under
natural conditions, depending on the environment [32].
Their malaria transmission potential is linked to their

Emergence
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longevity, as only older females are likely to transmit
the parasite P. falciparum. [33]

Methods

Study area and data

The Dakar metropolitan area, Senegal, was selected as a
case study for testing the framework. In Dakar, where the
main vector is An. arabiensis (a member of the complex
An. gambiae s.l.), malaria transmission is low, spatially
heterogeneous, and highly focal [10, 34]. Urban transmis-
sion has long been studied and demonstrated, in the city
centre [35, 36] as well as in the suburbs that are prone
to flooding due to a shallow water table and unplanned
urbanization in the lowlands [28]. The hot, wet season
spans from June to November, and the cool, dry sea-
son from December to May. The area of interest (AOI)
includes the departments of Dakar, Guediawaye and
Pikine, and part of the department of Rufisque (Fig. 2).
The spatial extent of the output maps is limited to the
extent that is common to all input layers.

The image used is a Pléiades pan-sharpened tri-
stereo triplet acquired during the hot, wet season of
2015, with a spatial resolution of 0.5 m, and a set of
already existing layers derived from it: (i) a digital ter-
rain model (DTM) resampled to 5 m; (ii) a land-cover
(LC) map (0.5 m) produced through a semi-automated
open-source processing chain for object-based image
analysis and supervised machine learning classification
[37, 38]; (iii) a map of the dominant land use (LU) at the
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Fig. 1 Anopheles life cycle, adapted from [33]
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composite ©CNES (2015), Distribution AIRBUS DS.

street-block level [39]; and (iv) a 100 m x 100 m gridded
map of population distribution, predicted by top-down
dasymetric redistribution of census population data
[40]. The land-cover, land-use and population maps
are available from the Zenodo scientific repository
[40—42]. Besides, an open access layer of soil properties
was also used, namely the open iSDAsoil layer of soil
pH in Africa, predicted at 30 m resolution, at a depth of
0-20 cm [43].

The entomological data used for validating the larval
habitat suitability map were collected for a study aim-
ing to locate and characterize anopheline larval habitats
in the Dakar suburbs [28]. During the 2013 rainy season,
908 water bodies were surveyed and geolocated with
GPS, among which 575 were positive for anopheline lar-
vae. Thirteen types of water bodies were included: basins,
canals, market-garden wells, puddles, lakes, flooded
abandoned houses, ponds, backwaters, wells, ravines,
drain channels, streams, and holes. Anopheline larvae
were found in 63% of them, and all water body types
hosted larvae to some extent. Here, only the positive
samples are considered.

General framework

A geospatial framework is proposed for modelling urban
malaria exposure (Fig. 3), defined as the contact risk
between adult vector Anopheles gambiae (i.e., the haz-
ard) and human population. A single dimension of vul-
nerability is included, namely morphological deprivation.
Considering entomological data scarcity in sub-Saharan
African cities, a deductive spatially-explicit multi-criteria
decision analysis (MCDA) [44] is implemented for map-
ping vector habitat suitability, relying on the Analytical
Hierarchy Process (AHP) [45]. Spatially explicit MCDA
is recognized as a powerful tool with great potential for
supporting decision-making in public health [26]. This
type of analysis does not require the use of species pres-
ence data for training the model. Such data are used only
for validation purposes if availability permits. Another
advantage of AHP is that it allows for the active involve-
ment of multiple stakeholders, experts and/or decision
makers who can make their voices heard. Ensuring that
their input is accounted for in the analysis and that the
process is overall interpretable is likely to favour accept-
ance and uptake of the method [26]. The first step in this
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Fig. 3 Geospatial framework for mapping urban malaria exposure (i.e,, contact risk between vectors and human population)

type of analysis, once the problem and stakeholders have
been determined, is the identification of criteria that are
of two types, i.e., factors influencing habitat suitabil-
ity, and Boolean constraints used for masking out areas
that must be excluded. After creating the factor and con-
straint layers, factor layers are scaled and weighted before
being aggregated along with constraints into a habitat
suitability map. The workflow is detailed in the next sub-
sections. Most steps were automated through the devel-
opment of a processing chain that relies on open-source
software. MCDA processing was carried out at a resolu-
tion of 5 m and the final output gridded maps (hazard,
population and exposure) have a resolution of 100 m.

Hazard-a/Larval habitat suitability

Identifying a set of criteria (factors and constraints),

and obtaining or producing the corresponding geospatial
layers

The first step for mapping hazard is the prediction of
larval habitat suitability. The main criteria that influ-
ence habitat suitability of the main urban malaria vector
in sub-Saharan Africa (i.e., An. gambiae) were identified
based on literature and local expert knowledge. The iden-
tification of criteria and their translation into geospatial
layers for locating sites conducive to vector breeding are

the foundation of this analysis. The fine-scale heteroge-
neity of urban malaria requires going beyond determi-
nants typically used for mapping malaria exposure over
large zones, e.g., in rural areas. A relevant selection was
made in this respect, also ensuring that producing or
obtaining the necessary geospatial data with a sufficient
level of detail is reasonably feasible. Eight layers were
used to represent the main factors (Fig. 4, and Tables 1,
2, 3, 4), namely (i) a land-cover map (categorical), (ii) a
land-use map (categorical), (iii) a landform map (cat-
egorical), (iv) the topographic wetness index (TWI) as
a steady-state proxy for soil moisture (continuous), (v)
the distance to buildings (continuous), (vi) the distance
to trees (continuous), (vii) the distance to dumpsites as a
proxy for water pollution (continuous), and (viii) the soil
pH (continuous). These layers, except for soil pH, are all
derived from Pléiades imagery. The existing land-cover
layer was adapted to the needs of the analysis by merg-
ing the classes low buildings and medium and high-rise
buildings into a single class buildings, splitting the class
water bodies into small water bodies, medium water bod-
ies, large water bodies, water courses (using OpenStreet-
Map [46] data as ancillary information), and marine
waters (based on local expert knowledge), splitting the
class low vegetation into grass and scrub/shrub employing
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Fig. 4 Larval habitat suitability factors (subset). (@) land cover, (b) land use, (c) landforms, (d) TWI (on hillshaded DTM), (e) distance to buildings, (f)

distance to trees, (g) distance to dumpsites, (h) soil pH

a metric of homogeneity calculated from the Pleiades
near-infrared band (i.e, GLCM homogeneity, 11 x11
pixels), and adding a class dumpsites containing the only
large landfill of the city (extracted from OpenStreetMap
data). The existing land-use layer was used without any
adaptation. Landforms were computed from the exist-
ing Pléiades DTM using Geomorphons, a machine vision
approach that uses ternary patterns [47]. The two main
parameters, namely the outer search radius and flatness
threshold, were set heuristically by testing a range of
values and checking the result over a part of the area of
interest where the relief is marked. SAGA GIS was uti-
lised for producing TWI as it offers a broader choice of
algorithms than GRASS GIS for this purpose. The guide-
lines proposed in a study that assesses the effects of dif-
ferent algorithms on the relation between TWI and soil
moisture were followed [48]. DTM sinks were filled with
the Fill Sinks XXL algorithm, flow accumulation was
computed with the Multiple-flow algorithm, slope gra-
dient with the Haralick (10 parameters) algorithm, and
TWI with the Standard method, with cell size area con-
version (pseudo specific catchment area). Three distance
layers (distance to buildings, distance to trees, distance to
dumpsites) were produced from the corresponding land-
cover classes. For soil pH, no processing was necessary as
the open iSDAsoil layer was used. Factor multicollinear-
ity was assessed with the Variance Inflation Factor (VIF)
for avoiding redundancy. VIF ranges from 1 upwards. A
value of 1 for a factor can be interpreted as an absence of
correlation with the other factors, values between 1 and

5 as low to moderate correlation with at least one other
factor, and values greater than 5 as high correlation with
at least one other factor.

Since processing satellite imagery for producing spa-
tially explicit criteria may not be an option in some appli-
cations, alternative existing open products are suggested,
although they currently have a coarser spatial resolution
than those used in this study (as far as rasters are con-
cerned): Open Buildings [49], Esri 2020 Land Cover
(10 m) [50], WorldCover (10 m) [51], WUDAPT LCZ
(100 m) [52], SRTM (~30 m) [53], Global SRTM Land-
forms (90 m) [54], and Global SRTM mTPI (270 m) [54].
The suggested replacements are detailed in Tables 1, 2, 3,
4,5,6,7.

Using coarser products as input implies several limi-
tations, including the fact that small features cannot
be accounted for as they are absent from these open
products.

Several identified suitability criteria were excluded from
the study, either due to the high cost of the data sources
involved (e.g., LIDAR, hyperspectral imagery), their lim-
ited geographic coverage (e.g., drone imagery), the com-
plexity of the modelling processes involved for obtaining a
sufficient level of detail (e.g., urban meteorological deter-
minants such as air temperature, wind speed, precipita-
tion, and relative humidity), or the lack of in situ data for
calibration (e.g., surface water parameters). They are listed
in Additional file 1: Table S1 as they could prove usable
in future work due to advances in Earth Observation and
increased availability of open big data. Moreover, absolute
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Very
strongly
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Fig.5 Saaty’s fundamental rating scale

elevation is not accounted for in the selected case study as
it is unlikely to have an influence on vector habitat suitabil-
ity, Dakar being a coastal city with an overall low elevation.

Boolean constraints were created from the land-cover
classes buildings, paved surfaces, trees, water courses,
marine waters and for a narrow strip along the coastline
that includes highly unsuitable features such as beaches
and rocks.

Scaling factors

Since factors are different in nature, it is necessary to nor-
malize them to a common scale of values ranging, e.g.,
from O (least suitable) to 100 (most suitable) before aggre-
gating them. The continuous factors TW1I and soil pH were
rescaled by min—max normalization, and linear member-
ship functions were applied to the distance to buildings,
distance to trees and distance to dumpsites. In MCDA
applications, scaling criteria using membership functions is
a common procedure aiming at reflecting human thought
that is able to deal with fuzziness [86]. In fuzzy set theory,
real numbers can be mapped to a membership degree in
some fuzzy set using a parametric function (e.g., a trap-
ezoidal function). Here, membership functions attempt
to capture the fuzziness (or imprecision) of judgements
concerning the variation in criteria score that occurs as
the distance from objects of interest (e.g., buildings, trees,
dumpsites) increases. Categorical factors were rescaled
through AHP. Five experts with a strong background in
vector ecology filled out pairwise comparison matrices
(PCMs) using Saaty’s fundamental rating scale [87] (Fig. 5)
for comparing sub-factors in terms of suitability, i.e., each
land-cover class to other land-cover classes, each land-use
class to other land use classes, and each landform to other
landforms.

In the first iteration, the experts filled out PCMs following
their individual judgements, without consulting their pairs.
The consistency of expert judgements was assessed by com-
puting the Consistency Ratio (CR) of each PCM [88]. CR is
based on the calculation of a Consistency Index (CI)

Amax — 4

Cl= (1)

n—1
where Amax is the principal eigenvalue of the positive
reciprocal matrix, and n is the number of factors. CR
is the ratio of CI to a Random Index (RI) available from

1

Moderately Equally
less suitable less suitable suitable
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3 5 7 .
Moderately ~Strongly Very
more more strongly
suitable suitable more
suitable

literature that was derived from a large set of random
PCMs

a

CR=—
RI

(2)

As a rule of thumb, matrices with CR>0.10 (i.e., more
than 10% as inconsistent as a random matrix) are consid-
ered too inconsistent for AHP. However, previous studies
have highlighted the difficulty to reach such low values in
practical applications, in particular for large PCMs [89].
Moreover, while an elevated level of consistency is desir-
able, it is also important to respect expert judgements and,
therefore, to adapt consistency cut-off values to a level that
is deemed acceptable for the study. Here, a second itera-
tion was necessary, to provide some of the experts with
the opportunity to revise their judgements in PCMs with
CR>0.15 (CR>0.20 for the large land-cover PCM with 14
sub-factors) and reaching an acceptable level of consist-
ency. As experts filled out PCMs without consulting their
pairs, they functioned as individuals and not as a group. In
this case, the aggregation of experts’ opinions is obtained
by Aggregation of Individual Priorities (AIP), as opposed
to Aggregation of Individual Judgements (AIJ) [90]. AIP
can be achieved by calculating their weighted geometric
mean (WGM) to obtain a representative priority vector
(i.e., the weight vector) for each PCM [91]. The importance
assigned to each expert can also be weighted according to
their level of expertise. However, since experts who con-
tributed all have a broad expertise and excellent knowl-
edge of the AQ], their judgements were considered equally
important and received equal weights.

Weighting factors

Two factor weighting scenarios were considered and
compared for assessing the merit of local expert knowl-
edge and knowledge derived from literature, respectively.
In the first scenario, AHP was implemented for deriving
the relative importance of the factors, as described above.
In the second scenario, the weights were derived by an
EO scientist based on a literature review, following the
same approach.

Aggregating criteria
For each scenario, two HSI maps were produced, the first
by calculating the weighted sum of factors
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HSI = Ele(wixi) (3)

where w; are the factor weights and x; are the factor
scores, and the second by multiplying the weighted sum
of factors by the product of Boolean constraints

HSI = =7 | (wix;) * H/.W;lcj (4)

where ¢; are the Boolean constraints.

Aggregating HSI to grids and validating the gridded maps
The HSI maps were validated using the 575 samples posi-
tive for anopheline larvae. The validation area was spa-
tially restricted to the part of the metropolitan area where
the samples were collected. It was delineated by perform-
ing a spatial clustering of the sampling points, calculat-
ing a concave hull around the 2 resulting point clusters,
and adding a 100-m buffer to include the sampling points
located on the hull outlines. Inaccessible areas where no
sampling could be organized were excluded, e.g., large
water bodies. Validation was conducted based on mean
HSI calculated in grid cells of increasing sizes (15 m,
25 m, 45 m, 95 m, i.e., from the smallest possible aggre-
gation (3 x3 pixels) to about 1 ha) to evaluate how spa-
tial uncertainties (such as the precision of survey points’
coordinates) affect the accuracy of fine-grained predic-
tions, and what would be a suitable aggregation level for
the output gridded map. Accuracy was assessed by com-
puting the Continuous Boyce Index (CBI) [92, 93] with
the ecospat.boyce function included in the R Ecospat
package [94]. CBI requires observed presence only and
assesses to what extent model predictions differ from a
random distribution of observed presence data across the
prediction gradient. It was proved to be a reliable accu-
racy measure of presence-only predictions, and previous
study showed that it outperforms other evaluators [93].
It takes as input on one hand all predicted suitability val-
ues, and on the other hand predicted suitability values at
presence records. CBI score varies between -1 and 1, with
negative values indicating a poorly performing model,
values close to 0 implying similarity to a random model,
and positive values increasing with the model’s ability to
output predictions consistent with the observed presence
data. The ecospat.boyce function also outputs the F-ratio
that is the ratio of Predicted frequency (P) to Expected
frequency (E), allowing to plot the P/E curve as a func-
tion of HSIL. The second indicator of model performance
is the shape of the P/E curve. It complements CBI score,
as the latter is not affected by curve shape as long as the
curve is monotonically increasing, whereas any diver-
gence from the straight line reveals a lowered ability to
distinguish different suitability classes.

Page 12 of 29

Classifying HSI into suitability classes

Providing a map with continuous HSI values to end-users
could give them a spurious impression of precision and
be misleading. Therefore, the best map of continuous
HSI values was converted into a map with four suitabil-
ity classes: unsuitable, marginal, suitable and optimal,
following the method proposed by [93] that relies on the
examination of the P/E curve.

Hazard-b/Adult vector habitat suitability

Identifying a set of criteria (factors and constraints),

and obtaining or producing the corresponding geospatial
layers

A similar approach was adopted for mapping adult habi-
tat suitability, drawing from literature and expert knowl-
edge to select the criteria, and considering the feasibility
of obtaining or creating the corresponding spatial lay-
ers. In urban areas, the dispersal range of adult vec-
tors around breeding sites is short (up to a few hundred
meters [8, 33, 64]), as human hosts are widely available
for blood meals. Therefore, the first factor is the distance
to larval habitats, as extracted from the best larval habi-
tat suitability map in terms of CBI score. Two layers were
created, i.e., the distance to optimal larval habitats, and
the distance to suitable and optimal larval habitats. The
second factor is the distance to buildings, as a proxy for
distance to human hosts. The third factor is the land
cover, for which the same layer as for larval habitats
was used, with different adaptations. Buildings were not
merged into a single class, as low buildings (as a proxy
for poorly built dwellings) are more likely to indicate a
lower socioeconomic status and are more prone to open-
ings that could let mosquitoes in, thus providing poten-
tial feeding and resting opportunities. Trees and shrub/
scrub were merged into a single class of leafy vegetation
potentially providing suitable sites for mosquitoes rest-
ing outside. Water bodies were also merged into a single
class as they are considered mostly unsuitable habitats
for adult vectors. The fourth factor is the land use, and
it did not require adaptations. The factors are presented
in Tables 5, 6, 7. No constraints were considered in the
analysis of adult habitat suitability for excluding areas.
The suggested alternative open products are the same
as for larval habitat suitability, and include in addition
WSE3D [95] that estimates average building height in
90 m x 90 m grid cells.

Scaling factors

The distance to suitable larval habitats was scaled using a
membership function derived from a study where adult
vector density in dwellings was calculated for 7 distance
intervals along a transect of 910 m starting from the edge
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Table 5 Continuous variables derived from VHR imagery, with suggested open alternatives, and knowledge relating to their influence
on adult vector habitat suitability (from literature and experts)

Continuous variables from VHR
imagery

Alternative existing open
product(s)

Larval habitat suitability—Sub-
Saharan African cities

Larval habitat suitability—Dakar

Distance to breeding sites (derived
from larval habitat suitability)

n/a

In Africa, the dispersal range of
Anopheles vectors of malaria from
their breeding sites is generally
less than 1 km and rarely exceeds
2-3 km. In peri-urban/urban areas,

There is a high correlation between
the spatial distribution of adults and
larvae [34]. Adult vector abundance
decreases sharply with increasing
distance from breeding site [10, 36]

Distance to human dwellings
(proxy: distance to buildings)

Calculate distance to Open Build-
ings

this range is shorter and will likely
not exceed a few hundred meters
when human hosts are available

nearby for blood meals [8, 33, 64]

An. arabiensis primarily feeds

and rests indoors, but due to
widespread use of Long-Lasting
Insecticidal Nets (LLINs) and Indoor
Residual Spraying (IRS), the behav-
jour of this vector becomes more
flexible, and it also tends to feed
and rest outdoors [96]

The proximity of breeding sites to
human dwellings greatly limits the
spatial dispersion of vectors [28]

of a large permanent urban wetland (the Great Niaye of
Pikine) [36]. The distance to buildings was rescaled with
a linear function. For categorical factors (land cover and
land use), the same AHP approach as for larval habitat
suitability was used.

Weighting factors, aggregating criteria, aggregating HSI

to grid, verifying, classifying into suitability classes

As for larval habitat suitability, relative factor impor-
tance was assessed by vector ecology experts through
pairwise comparisons. The HSI map was produced
from a weighted sum of factors, but Boolean constraints
were not included. HSI was aggregated to grid cells of
100 m x 100 m to match the resolution of the human
population map, and binned into four classes, i.e., unsuit-
able, marginal, suitable, and optimal corresponding to
hazard levels very low, low, medium, and high, respec-
tively. Due to the unavailability of data on the presence
of adult vectors having an extensive spatial coverage, the
output was visually verified by experts having in-depth
knowledge of the area under study and its entomological
conditions.

Population and vulnerability

Several global gridded layers of human population dis-
tribution are openly available [105] and can be used for
mapping human population exposed to the risk of con-
tact with an urban malaria vector. Alternatively, a site-
specific map can be created when demographic data
and spatial co-variates are available. Here, an existing
site-specific gridded population map (Fig. 6) was used. It
was produced by redistributing population counts from

administrative units in 100 m x100 m grid cells using a
top-down dasymetric mapping approach [41]. Popula-
tion density was divided into three classes, i.e., high,
medium, low. Population values were log-transformed,
and the class breaks were defined using the standard
deviation algorithm. Due to overall limited availability of
timely spatial data on population socioeconomic status,
mobility, acquired immunity, awareness level, access to
drugs, use of larvicides and insecticides, use of insecti-
cide-treated bed nets, etc. the inclusion of vulnerability
dimensions was limited to area-level morphological dep-
rivation. The latter is represented by the land-use class
deprived urban areas (Fig. 6) that is accounted for in both
larval and adult habitat suitability mapping. The relation-
ship between urban deprivation and urban malaria risk is
strong, as highlighted by several authors [106—108]

Urban malaria exposure

The final output is a 100 m x 100 m gridded map of urban
malaria exposure that results from combining hazard lev-
els with population density classes into a bivariate map.
Since a single dimension of vulnerability is included in
the framework, the term ‘exposure’ rather than risk’ is
conservatively adopted. The predicted variations in the
risk of contact between humans and vectors across the
metropolitan area were visually verified by local experts.
It is important to consider that the levels of hazard and
exposure are not absolute but relative. A high level of
hazard in Dakar, an urban area with low endemicity, does
not compare to, e.g., a high level of hazard in rural areas
with high endemicity.
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Results

Hazard-a/larval habitat suitability

No factor had to be discarded due to multicollinear-
ity, as VIF was close to 1 for each of them. The scores of
categorical sub-factors obtained from AHP emphasize
the high suitability of LC classes small water bodies and
medium-sized water bodies, LU classes wetlands, agricul-
tural areas and deprived residential areas, and concave
landforms pits and valleys (Table 8). The membership
functions used for scaling distance layers are presented
in Fig. 7. According to scenario 1 (involving five experts),
the factors with the highest relative importance are soil
moisture and water pollution, whereas land cover and
landforms are the highest ranked in scenario 2 (involving
an EO scientist) (Fig. 8).

For each scenario, an HSI map was produced and val-
idated using anopheline larvae presence data. Four sur-
vey samples were discarded due to geolocation error,
leaving 571 usable presence points. The first validation
step consisted in comparing the CBI scores of both sce-
narios in four cell sizes, using only the weighted sum
of factors, without Boolean constraints (Fig. 9). CBI

scores reached the highest values in small cells, with
a sharp decrease as cell size increases (except for sce-
nario 2 at 25 m), which indicates the reliability of fine-
grained larval HSI predictions. The best CBI score
was obtained by scenario 1 at 15 m (i.e., 3 x 3 pixels),
confirming that the involvement of local experts is the
best option for producing accurate fine-grained larval
HSI maps. Nevertheless, scenario 2 also reaches high
CBI scores for small cells, peaking at 25 m, which indi-
cates that drawing on literature is a valid alternative in
the case where it is not possible to involve a panel of
experts in the analysis.

The impact of adding constraints was assessed by
examining the P/E curves. In an ideal model, the P/E
curve would be linearly increasing, whereas in a random
model, it would be flat. In actual models, curves may
exhibit other shapes, as is the case here where they are
exponential, implying a better discrimination between
high-suitability habitats than between low-suitability
habitats. An example is provided in Fig. 10 for scenario
1 at 15 m, both without and with constraints. It appears
that constraints mitigate overpredictions in low HSI
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Fig. 8 Relative importance of factors derived though AHP, according to scenario 1 (left) and scenario 2 (right) (larval habitat suitability)

value ranges, and increase the maximum value reached
by the P/E curve (known as the F-value). The F-value is
an indicator of deviation from randomness, i.e., an indi-
cator of significance [93]. Similar effects were also gener-
ally observed for the other scenario and cell sizes.

The next step consisted in converting the continuous
HSI into suitability classes, based on the P/E curve [93].
With exponential curves, a broad ‘unsuitable’ category
can encompass the plateau (P/E<1), whereas a finer cat-
egorization can be made in the growing part of the curve,
e.g., ‘marginal’ (plateau around P/E=1), then ‘suitable’

up to a change in slope around P/E=15, and ‘optimal’ for
P/E>15, as shown in. (Fig. 11)

The P/E curves also demonstrate that scenario 1 per-
forms better than scenario 2 for high HSI values. Conse-
quently, the fine-scale map produced from scenario 1 was
retained to proceed with the analysis. Figure 12 shows
presence points overlaid on larval habitat suitability.
Points located close to the edges of suitable areas rather
than inside them were likely marked on the shores of
flooded zones. An example of optimal area is shown
in Fig. 13.
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Hazard-b/adult vector habitat suitability
The suitability scores of categorical sub-factors (Table 9) con-
firm the strong relationship that exists between urban depri-
vation and malaria hazard, with LC class low buildings and
LU class deprived residential areas obtaining the highest
scores. On the other hand, very low scores were obtained
for paved surfaces, bare soil, and swimming pools for LC, and
for non-residential built-up areas and non-agricultural areas
with sparse or no vegetation for LU. More unexpectedly, high-
density planned residential areas are judged more suitable
than low-density planned residential areas and even agricul-
tural areas. The membership functions for scaling distance
factors are presented in Fig. 14.

Regarding relative importance, the factor with the
highest score is by far the distance to breeding sites, fol-
lowed by the distance to buildings (Fig. 15).

Table 8 Suitability scores of categorical sub-factors for larval habitat suitability

LC classes Score LU classes Score Landforms Score
Buildings 0 High-density planned residential areas 9 Flats 17
Swimming pools 8 Low-density planned residential areas 16 Peaks 0
Paved surface 5 Deprived residential areas 79 Ridges 1
Dumpsites 10 Non-residential built-up areas 0 Shoulders 7
Bare soil 16 Agricultural areas 87 Spurs 7
Grass 19 Non-agricultural vegetated areas 36 Slopes 2
Shrubs 11 Non-agricultural areas with sparse or no veg 31 Pits 100
Trees 5 Wetlands 100 Valleys 70
Small water bodies 100 Footslopes 53
Medium water bodies 88 Hollows 42
Large water bodies 54

Water courses 11

Marine waters

Shadow

Bold values indicate highly suitable sub-factors

Table 9 Suitability scores of categorical sub-factors for adult vector habitat suitability

LC classes Score LU classes Score
Low buildings (incl. poorly built) 100 High-density planned residential areas 35
Medium and high-rise buildings 39 Low-density planned residential areas 20
Swimming pools 8 Deprived residential areas 100
Paved surface 0 Non-residential built-up areas 0
Dump sites 26 Agricultural areas 29
Bare soil 2 Non-agricultural vegetated areas 17
Grass 35 Non-agricultural areas with sparse or no veg 7
Trees and shrubs 52 Wetlands 30
Water bodies 18

Shadow 18

Bold values indicate highly suitable sub-factors
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Two adult vector habitat suitability maps were pro-
duced, where the suitability classes reflect the hazard
levels (i.e., unsuitable corresponding to very low hazard,
marginal to low hazard, suitable to medium hazard, and
optimal to high hazard). The first map uses the factor
distance to optimal larval habitats as input (Fig. 16). It is
more restrictive than the second that uses the factor dis-
tance to suitable and optimal larval habitats (Additional
file 2 Figure S1). It should be noted that the hazard lev-
els are relative, and specific to the urban context of the
Dakar metropolitan area that is overall a low transmis-
sion setting. The maps reflect the low dispersal of adult
vectors from their breeding sites. This phenomenon is
explained by the proximity of their blood meal source
[33, 109, 110]. During the field survey in the suburbs
of Dakar, more than 90% of anophelines’ breeding sites
were found at a distance smaller than 10 m from human
dwellings. Moreover, the areas where anopheles mosqui-
toes’ breeding sites were particularly abundant during the
rainy season were correlated to the presence of flooded
abandoned houses that served as resting places [28].

Urban malaria exposure

The bivariate urban malaria exposure maps resulting
from a combination of hazard levels with population
density classes characterize the likelihood of contact
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between adult vectors and humans. Since areas that are
optimal for adult vector habitat are also generally areas
that are densely populated, the hazard maps (Fig. 16 and
Additional file 2 Fig. S1) and the exposure maps (Fig. 17
and Additional file 2 Fig. S2) display similar patterns.
The areas that combine high hazard with high popula-
tion density are mostly located in suburbs prone to flood-
ing due to their unfavourable situation in lowlands. This
finding is consistent with previous epidemiological stud-
ies [77, 111]. In Dakar, 62% of the urban population live
in the suburbs, thus causing strong demographic pres-
sure associated with uncontrolled urbanization [112].
This leads to the proliferation of deprived overcrowded
neighbourhoods with poor sanitation infrastructures.
Several areas combining high hazard with medium popu-
lation density are found close to humid zones, e.g., zones
devoted to market gardening. Previous work in the Dakar
suburbs has shown the importance of micro-ecological
conditions, in particular the presence of breeding sites,
on the intensity of malaria transmission. The risk of being
bitten by infected Anopheles females was higher in the
area where the presence of breeding sites was higher [71].
Fig. 17 highlights a large area located in Pikine that com-
bines high hazard with high population density. It is the
least urbanized in terms of infrastructure and actually
has the highest levels of population density.
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Discussion

Application

Applying the framework to Dakar using VHR imagery
resulted in three types of output. The first output is com-
posed of the larval habitat suitability maps at a resolution
of 5 m that were validated with entomological survey
data. The results shown in Fig. 12 are consistent with pre-
vious field observations on the distribution of Anopheles
breeding sites [28]. Indeed, the most suitable areas for
anophelines breeding sites across the studied urban set-
ting consist of rain-filled shallow water bodies. Moreover,

the proximity of such stagnant water bodies to densely
populated areas contribute to the proliferation of ovi-
position sites readily accessible to gravid females of An.
arabiensis, the main vector of malaria in Dakar [71]. The
location of breeding sites is also linked to rapid uncon-
trolled anthropisation with inappropriate land use plan-
ning and poor sanitation, another key factor influencing
the abundance of breeding sites of malaria vectors. Nev-
ertheless, suitable areas were identified not only in the
flood-prone deprived suburbs but also, to a lesser extent,
in planned urbanized areas. On the other hand, the low
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Fig. 13 Left: An example of area characterised by optimal larval habitat suitability: highly populated, prone to flooding, with unplanned
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Fig. 15 Relative importance of factors derived through AHP (adult
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occurrence of anopheline breeding sites in some areas
could be linked to a soil texture that favours the infiltra-
tion of rainwater, or to improvements of the water drain-
ing system [113, 114] that reduce the number of stagnant
water bodies. These aspects were not accounted for in
this study. Puddles likely play the most important role in
the production of Anopheles larvae. However, identify-
ing every puddle would require the use of images with an
even finer resolution than Pléiades (e.g., drone imagery),
and frequent acquisitions to account for rapid changes,
which seems costly and unrealistic. Instead, a more effec-
tive approach was put forward that uses a conjunction of
factors for identifying areas that are prone to the forma-
tion of puddles. TWI, as a proxy for soil moisture, and
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concave landforms play an important part in this process.
Besides, water pollution is also identified as a crucial fac-
tor, although it is known that vectors are adapting to it [9,
12, 82, 83]. The second output is the adult vector habi-
tat suitability maps at a resolution of 100 m (i.e., the haz-
ard maps) that were verified by experts. The proximity
of the three essential elements of the gonotrophic cycle,
namely the breeding sites, the source of blood meals and
the resting places explain the high habitat suitability, in
the areas highlighted by the map as hazardous. The dis-
tance to breeding sites is considered the main factor to
account for in adult vector habitat suitability mapping,
and the developed approach allows for deriving it from
suitable larval habitats. The other factors help refine dis-
persal patterns according to the availability of hosts for
blood meals and resting sites. Low buildings (likely to
indicate a lower socioeconomic status in Dakar, although
they could reflect certain types of affluent neighbour-
hoods in other contexts) and deprived urban areas offer
suitable conditions in this respect. The third output is the
urban malaria exposure maps at a resolution of 100 m.
The patterns depicted by both the hazard and exposure

maps display similarities and are consistent with findings
of previous epidemiological studies. The proliferation of
breeding sites increases the probability of high adult vec-
tor densities in their vicinity, which in turn exacerbates
exposure in areas with high population density and poor
sanitation.

Limitations of the approach

The approach has some limitations that must be
acknowledged. First, some of the identified criteria were
discarded, e.g., those that imply a high production cost,
or require access to in situ data, as the aim was to pro-
pose a method that can be replicated in other cities under
cost and data availability constraints. In addition, a bet-
ter indicator of water pollution than distance to landfills
should be considered in future studies, to account for
the influence of household and industrial wastewater.
Besides, uncertainties are present at several stages of the
process, starting with the input datasets that are derived
from modelling. In particular, the weights of factors and
sub-factors strongly influence the results, and they are
likely to suffer from inconsistencies. This was mitigated
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factors. Areas of very low to low hazard are not emphasized

by collecting multiple judgements from a panel of experts
and allowing these experts to revise their judgements
whenever inconsistency exceeded a predetermined
threshold. The impact of changes in the relative impor-
tance of factors on the result was also tested. In addition
to thematic uncertainties, spatial uncertainty is also pre-
sent, notably due to the different spatial resolutions of
the data used. Therefore, discrete 100 m x 100 m gridded
hazard and exposure maps were produced instead of con-
tinuous maps with a finer resolution, in view of reducing
both spatial and thematic uncertainty.

Replicability

To facilitate replication, a baseline workflow relying on
open-source software functions was put forward. Adap-
tations will be required for every future application,
depending on input data availability and local specifici-
ties. To circumvent the obstacle of VHR satellite imagery
cost, alternative open data were suggested, although their
use involves limitations such as the inability to account
for small features (e.g., small water bodies that are among

the most important factors), and the missing land use
classes (e.g., deprived urban areas). In future applica-
tions, the choice between using a mix of data derived
from satellite imagery and from open data or relying
entirely on open data will depend on the level of detail
that needs to be attained, as well as on the budget and
EO skills at hand. With the current rapid increase in the
availability of broad-coverage geospatial datasets, the
need for pre-processing and processing of EO data is
expected to diminish, as finer-scale readily usable open
data covering a variety of themes continue to be released.
The main bottleneck is the limited availability of accurate
and timely spatial data on urban deprivation. Neverthe-
less, research is underway in this field and it is likely that
such data will be made available in the near future [115].

Perspectives

Perspectives for future research include testing the work-
flow using only open data and testing the replicability
of the approach in other cities having a different profile,
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more particularly secondary cities and cities located in
different climate zones. Scalability should also be inves-
tigated, e.g., using cloud computing platforms such as
Google Earth Engine or Microsoft’s Planetary Computer.
Adding temporal moisture indices, e.g., from Senti-
nel-1/2, as a complement to steady-state TWI may also
be beneficial for adjusting the results according to sea-
sonal variations. Subject to data availability, more dimen-
sions could be included in the vulnerability component,
such as immunity, behaviour, movements, and proper use
of Long-Lasting Insecticidal Nets (LLINs). Furthermore,
since policies are being established for more systematic
collection of epidemiological data in the future, a com-
bination of methods based on vector ecology knowledge
with methods implementing fine-grained spatial epide-
miological modelling [4] may prove essential to support
evidence-based urban malaria control.

Conclusions

In an effort to bring geospatial research output closer to
effective support tools for evidence-based policies and
targeted interventions, a spatially explicit approach was
developed and systematized for mapping urban malaria
exposure in a context of epidemiological and entomo-
logical data scarcity. While it relies on well-established
methods, its novelty resides in (i) the key role played by
expert knowledge in vector ecology, (ii) the broad set of
criteria identified and used, (iii) the fact that hazard is
not directly derived from larval habitat suitability but
from adult vector habitat suitability, (iv) the inclusion
of urban deprivation as a proxy for vulnerability, and (v)
the fine spatial resolution of the results, as required to
account for the high degree of heterogeneity observed
in urban areas. The application of this approach to a
case study demonstrated its potential for sub-Saharan
African cities and highlighted that in addition to the
influence of environmental factors, urban deprivation
also plays an influential role in urban malaria exposure.
A baseline workflow for favouring further applications
was proposed, and as the recent trend in fast-increas-
ing availability of open, broad coverage, ready-to-use
spatial layers derived from EO is expected to continue,
it will contribute to reduce the need for EO data pro-
cessing. Last but not least, building or strengthening
the capacities of local actors in geospatial methods is
essential to foster the sustainable uptake of approaches
such as the one developed in this study.

Abbreviations

AHP Analytic hierarchy process

Al Aggregation of individual judgements
AlP Aggregation of individual priorities
AOI Area of interest

CBI Continuous Boyce index
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c Consistency index

CNES Centre National d'Etudes Spatiales
CR Consistency ratio

LiDAR Light detection and ranging
DT™M Digital terrain model

EIR Entomological inoculation rate
ENM Ecological niche model

EO Earth observation

FOSS Free open-source software

GIS Geographic information system
GLCM Gray-level co-occurrence matrix

GRASS Geographic Resources Analysis Support System
HR High resolution

HS Habitat suitability

HSI Habitat suitability index

iSDA Innovative Solutions for Decision Agriculture
IRS Indoor residual spraying

LC Land cover

Lz Local climate zone

LLIN Long-lasting insecticidal net

LU Land use

MaxEnt Maximum entropy

MCDA Multi-criteria decision analysis

OSM OpenStreetMap

PCM Pairwise comparison matrix

RI Random index
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