
PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

Phase space approach to solving higher order differential equations with artificial neural networks

Floriano Tori * and Vincent Ginis †

Data Lab/Applied Physics, Vrije Universiteit Brussel, Elsene, Belgium

(Received 11 May 2022; accepted 1 October 2022; published 8 November 2022)

The ability to solve differential equations represents a key step in the modeling and understanding of complex
systems. There exist several analytical and numerical methods for solving differential equations, each with their
own advantages and limitations. Physics-informed neural networks (PINNs) offer an alternative perspective.
Although PINNs deliver promising results, many stones remain unturned about this method. In this paper, we
introduce a method that improves the efficiency of PINNs in solving differential equations. Our method is related
to the formulation of the problem: Instead of training a network to solve an nth order differential equation, we
propose transforming the problem into the equivalent system of n first-order equations in phase space. The
target of the network is to solve all equations of the system simultaneously, effectively introducing a multitask
optimization problem. We compare both approaches empirically on various problems, ranging from second-
order differential equations with constant coefficients to higher-order and nonlinear problems. We also show
that our approach is suited for solving partial differential equations. Our results show that the system approach
performs equal or better in most experiments performed. We analyze the learning process for the few runs that
did not perform well and show that the problem stems from conflicting gradients during training, effectively
obstructing multitask learning. The result of this paper is a straightforward heuristic that can be incorporated
into any subsequent research that builds on PINNs solving differential equations. Moreover, it also shows how
to make PINNs even more efficient by implementing techniques from multitask learning literature.

DOI: 10.1103/PhysRevResearch.4.043090

I. INTRODUCTION

Through artificial neural networks (ANNs), deep learning
methods have demonstrated their potential in many scientific
fields, from image recognition [1] to chemistry [2], high-
energy particle physics [3], and even genomics [4]. The power
of these techniques to solve such problems comes from their
exceptional capabilities to process large amounts of data and
find patterns within. However, purely data-driven approaches
are susceptible to limitations. One of these is the lack of
guarantee that the models generated will make predictions
that respect physical laws which the underlying data follow.
In addition, training the networks to obtain accurate predic-
tions requires a large amount of training data, which is not
something that can always be assumed in many scientific
disciplines. Finally, a purely data-driven approach offers the
least transparency and interpretability, two essential features
when using machine learning algorithms for scientific insight
[5].

One method to solve these problems is to endow networks
with prior knowledge with the task they are solving, resulting

*Floriano.Tori@vub.be
†Also at School of Engineering and Applied Sciences, Harvard

University; ginis@seas.harvard.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

in informed machine learning [6]. A successful technique
for this is physics-informed neural networks (PINNs) [7–9],
which incorporates the prior knowledge through a differen-
tial equation in the loss term of the network, describing the
natural laws which the data follow. This term incentivizes the
output of the network to satisfy the physical constraints and
acts as a regularization term. Many applications, from solving
cosmological phase transitions [10] to predicting plasma flow
[9] or even computing the temperature distribution above an
espresso cup [11], have shown this to be a viable technique.
In addition to enhancing learning, PINNs can be used purely
as differential equation solvers because neural networks are
universal function approximators [12]. This idea has been
around for some time [7,13] but has received more attention
due to recent breakthroughs in deep learning.

Solving (partial) differential equations is an essential ele-
ment in science to understand complex systems, but often, one
cannot solve these problems analytically. Therefore, numer-
ical techniques, such as Runge-Kutta, have been developed
and optimized over the years to obtain (approximate) solu-
tions. One important difference neural networks have with
respect to classical numerical methods is that their result
is a continuous and differentiable function. This allows us
to use networks to solve differential equations, without pre-
determining where we should sample the solution, which
makes them more flexible tools. This advantage, however, is
reduced if the solution contains a discontinuity, as this is a
hindrance the network then has to overcome. Although using
neural networks to solve differential equations is very promis-
ing, this technique is still in its infancy, and much focus in

2643-1564/2022/4(4)/043090(11) 043090-1 Published by the American Physical Society

https://orcid.org/0000-0003-4358-3368
https://orcid.org/0000-0003-0063-9608
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.043090&domain=pdf&date_stamp=2022-11-08
https://doi.org/10.1103/PhysRevResearch.4.043090
https://creativecommons.org/licenses/by/4.0/

FLORIANO TORI AND VINCENT GINIS PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

recent efforts has been toward understanding the convergence
and generalization errors of PINNs [14,15]. In recent work
[16–18], it was demonstrated that PINNs are hindered by two
limitations. The first one is due to the appearance of stiff
gradient flow dynamics as the complexity of the problem is
increased, e.g., by adding higher-frequency components or
multiscale features [16]. The consequence of this is that unbal-
anced gradients are backpropagated during learning. Further
investigating these problems, the authors of Ref. [18] used
neural tangent kernel theory [19,20] to show that PINNs can
suffer from a large difference in convergence rate for different
terms in the loss function. The second limitation of PINNs
originates from spectral bias [21,22]. This phenomenon lim-
its the capabilities of fully connected networks and renders
them unable to learn solutions with high-frequency compo-
nents [23–25]. In Ref. [16], the authors showed that this
problem was present in PINNs, and in further work [18], it
was demonstrated that this spectral bias corresponds to first
learning the target function along the eigendirection of the
neural tangent kernel with larger eigenvalues. In addition to
obtaining a theoretical understanding, authors have also fo-
cused on extensions to circumvent these shortcomings. Since
PINNs often struggle with problems defined on large, multi-
scale domains, it is possible to enhance traditional PINNs with
domain decomposition to improve learning [26,27]. Another
approach to circumvent the spectral bias comes from phase
deep neural networks (PhaseDNN) [28] or multiscale deep
neural networks (MscaleDNN) [29–31], which transform the
learning of high frequency into a problem of learning low
frequencies. Other general extensions include, for example,
Bayesian PINNs [32], which aim to include uncertainties in
the output of the network, an essential element when one
wishes to use these methods on equations with no known an-
alytical solution. Other authors have also focused on reducing
the computational requirements. As the highest costs come
from training a network from scratch for each differential
equation with a specific set of initial and boundary conditions,
methods such as DeepONets [33–35] or physics-informed
neural operator [36] learn operators, allowing them to be used
in an even broader class of problems.

An essential aspect of solving a differential equation is
satisfying the initial and boundary conditions. Two methods
have been developed in the field of PINNs to achieve this. A
first approach consists of imposing the requirements through
a term in the loss function. This technique means that the
learning procedure will prioritize solutions that satisfy the
conditions as close as possible. Although straightforward to
implement, this approach has a significant drawback: The
network does not have to adhere to the requirements strictly,
as the term in the loss only incentivizes it to find solutions
that satisfy those conditions. In cases where the initial and
boundary conditions must be strictly adhered to, it is therefore
not possible to use this method. In this paper, we focus on
the second approach used in the original work by Lagaris
et al. [7]. In this case, we encompass the network in a trial
function and train the network such that the trial function,
not the network itself, satisfies the differential equation. We,
therefore, obtain a result that perfectly adheres to the initial
conditions and is an approximate solution to the differential
equation. The trial function consists of a sum of two parts,

where one part is a function A(t) that satisfies the initial condi-
tion of the problem, and a second function C(t,N) suppresses
the output of the network at the values of t specified by the
initial conditions. In this way, the trial function satisfies, by
construction, the initial conditions. The choice of these two
functions is not unique, and the structure of the trial function is
therefore also an element that can be analyzed in the learning
process [37] and has been generalized to problems that are
defined on irregular domains [38].

In this paper, we take a step sideways by investigating the
problem formulation and its influence on the learning capacity
of the network. There exists a bijective relationship between
the solution of an ordinary differential equation (ODE) of
order n and the solution of a system of n first-order differential
equations. Given the same constraints, in the sense of archi-
tecture complexity and learning algorithm, we compare the
performance of the network trained to solve the higher-order
differential equation with the performance of the network
trained on the equivalent problem formulated as a system of
equations. The structure of this paper is as follows: Sec. II
covers both approaches used and the network architectures.
Section III describes our results, comparing the performance
of both methods for a variety of ODEs. Here, we also show
the validity of our method in the case of partial differential
equations (PDEs). Finally Sec. IV is devoted to analyzing the
results.

II. METHODS

Consider a nth-order ODE:

x(n) = F [t, x, x′, . . . , x(n−1)], t ∈ [a, b], (1)

with n initial conditions, which has a unique solution on the
interval [a, b] [39]. To solve this differential equation through
hard constrained PINNs, we consider a neural network with
one input and output node N (t, θ) and define the trial func-
tion:

x̂(t) = A(t) + C[t,N (t, θ)]. (2)

The function C constrains the output of the network and en-
sures that, at the values of t for which an initial condition
is defined, the output of the neural network is suppressed.
Specifically, this means C(t,N) and its derivatives, up to the
order of the highest derivative involved in the initial condi-
tion, must be zero at the values of t involved in those initial
conditions. By choosing a specific form for A(t), we can then
guarantee that, at those values of t , the trial function x̂(t)
automatically satisfies the initial conditions. To clarify with
an example, we consider a second-order equation with the
initial condition x(0) = 1 and ẋ(0) = 2. In this case, we could
choose

C(t,N) = t2N (t, θ) and A(t) = 1 + 2t . (3)

We note as well that the choice for these functions is not
unique, as the factor multiplying the network in the function
C(t,N) has, in this case, as its only requirements that the
function itself and its first derivative must be 0 when t = 0.
The network is subsequently trained by minimizing the loss

043090-2

PHASE SPACE APPROACH TO SOLVING … PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

FIG. 1. Above: Architecture and loss used to solve the higher-order formulation of the problem. Below: Architecture and loss used for the
system formulation.

function:

L(t, θ) = 1

N

N∑
i

{x̂(n)(ti) − F [ti, x̂, x̂′, . . . , x̂(n−1)]}2, (4)

with ti ∈ [a, b]. As can be seen, it is the trial function, namely,
Eq. (2), which enters in the loss function. The choice of
C(t,N) and A(t) therefore play an important role in shaping
the loss landscape, which influences the learning capacity of
the network.

The preceding paragraph summarizes the traditional ap-
proach to solve higher-order differential equations with
PINNs. We now introduce our shortcut in phase space. Given
the differential equation in Eq. (1), it is always possible to
transform it into a system of n first-order ODEs x′ = f (t, x)
by defining f = (f1, f2, . . . , fn) as

f1[t, x, x′, . . . , x(n−1)] = x′

f2[t, x, x′, . . . , x(n−1)] = x′′

...

fn[t, x, x′, . . . , x(n−1)] = F [t, x, x′, . . . , x(n−1)].

Interestingly, the approach outlined above can still be used,
modulo a few modifications. The neural network now needs n
output nodes, denoted as Ni(t, θ), and the n trial functions are
then constructed as

x̂1(t) = A1(t) + C1[t,N1(t, θ)]

x̂2(t) = A2(t) + C2[t,N2(t, θ)]

...

x̂n(t) = An(t) + Cn[t,Nn(t, θ)].

Coupling back to our previous example, one possible choice
for the trial functions could be

x̂1(t) = 1 + tN1(t, θ)

x̂2(t) = 2 + tN2(t, θ).

Since both trial functions only need to encompass one con-
dition, we can choose the constraining functions to be linear:
Ci(t,Ni) = tNi(t, θ).

The neural network N (t, θ) then trains by optimizing the
loss function:

L(t, θ) = 1

N

N∑
i=1

n∑
j=1

{x̂ j (ti) − f j[ti, x̂, x̂′, . . . , x̂(n−1)]}2, (5)

i.e., the network is instructed to simultaneously optimize each
equation of the system. A visual overview of the difference in
the two methods is shown in Fig. 1.

For both the higher-order and system approaches, we need
to calculate the derivative of the network with respect to
its input nodes to compute the loss function. Performing
these computations is made possible through algorithms im-
plementing automatic differentiation that efficiently compute
these derivatives [40].

III. RESULTS

This section presents the results of the various experiments
performed to establish the performance difference between
both methods discussed in the previous section. Both methods
were evaluated on various differential equations, considering
a range of parameters. The first test consists of second-
order linear systems with constant coefficients. Gradually,
the complexity of the problem is increased by incorporating
nonconstant coefficients and nonlinear terms. We also eval-
uated the methods on two third-order problems. All systems
used in this analysis were analytically solvable, allowing us
to compare the solutions of the methods to the true solution.
The number of training points, namely, 35 equidistant points
over the interval, and the training algorithm are equal for all
problems.

The performance is quantified by computing, after train-
ing, the relative L2 error evaluated in validation points with
respect to the analytical solution. We highlight that we did not
fine-tune the hyperparameters to obtain the lowest possible
validation. The goal was to compare both approaches given
the same constraints. In most cases, we chose an architecture
with two hidden layers composed of 20 nodes and trained it
during 6000 epochs. For some problems, a more extensive
architecture of three hidden layers with 60 nodes each was
required and subsequently trained on 12 000 epochs. Finally,
hyperparameters such as the optimizer (ADAM [41]), learning
rate (0.001), and the activation function (SWISH [42]) were
maintained equal for all problems.

043090-3

FLORIANO TORI AND VINCENT GINIS PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

FIG. 2. The 30 solutions of the neural networks, after training for 6000 or 12 000 epochs to solve the higher-order equation (orange) or
the system of equations (green), together with the analytical solution are displayed. The lower panel shows the average error at each point
(line), while the shaded region indicates one standard deviation. All learning constraints were equal for both approaches, and the initial
parameters for each run were randomly initialized. (a) Center: ẍ + 2x = 0. (b) Stable spiral: ẍ + ẋ + x = 0. (c) Stable node: ẍ + 2ẋ + 1

2 x = 0.
(d) Unstable spiral: ẍ − ẋ + x = 0. (e) Unstable node: ẍ − 1

2 ẋ + 1
20 x = 0. (f) Saddle point: ẍ + ẋ − x = 0. (g) Degenerate node: ẍ − 2ẋ + x =

0. (h) Nonisolated fixed points: ẍ + ẋ = 0. The central panel shows the classification of constant coefficients, based on the trace (τ) and
determinant (�), of the matrix A in Eq. (6).

A. Linear ODEs with constant coefficients

It is widely known that a system of n first-order differential
equations is said to be linear if it can be written as

ẋ = Ax, (6)

where A is a n × n matrix. When the coefficients of A are
constant, it is possible to categorize the phase space of linear
systems by the trace (τ) and determinant (�) of the matrix
A. The fixed points of the system, which are the positions
in phase space where ẋ = 0, can then be classified into nine

distinct types. This categorization can be found in Ref. [43]
and is presented here in the center of Fig. 2.

This paper exploits the correspondence between higher-
order differential equations and systems of equations. We
start from the second-order homogeneous equation aẍ + bẋ +
cx = 0, which corresponds to a linear system with a matrix:

A =
(

0 1
c̃ b̃

)
with c̃ = − c

a
, b̃ = −b

a
. (7)

043090-4

PHASE SPACE APPROACH TO SOLVING … PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

FIG. 3. (a) L2 error for short training times in log scale. (b) L2 error for long training times in log scale. (c) Nonconflict ratio R (blue)
overlayed with the relative improvement (black) between short and long training times.

Even though the form of the matrix A is restricted, it is still
general enough to explore the full range of different linear
systems.

To assess the performance of the approaches against each
other, we solve a linear system with each type of phase space.
For each problem, we performed 30 random initializations
of the networks, and Fig. 2 displays the final results, after
training, of those random initializations for both methods.
The lower panel of each figure shows the mean error and
one standard deviation at each point. The range on which
the differential equations were solved depended on the spe-
cific problem, as the value of the analytical solution was
kept between predefined bounds. We expect the choice not
to influence the results, as both methods received the same
problem. The results of all runs can be found in Fig. 2,
while Fig. 3 displays the average L2-error values reached.
The results obtained for the differential equation show that
the system approach outperformed the higher-order formula-

tion in 6 of the 8 cases while having similar training times.
We performed a second run for all eight equations with a
training time of 18 000 epochs to examine the dependence
on the epoch hyperparameters. Figure 3 shows the resulting
L2 errors. The results indicate that the system approach, in
these cases, performs better on shorter training times but can
also outperform its counterpart when trained longer. For these
longer training times, the system approach also closed the gap
for the two equations it struggled with on shorter training
times, reaching an L2 error which was on the same order
of magnitude as the higher-order approach. Both behaviors
mentioned above are visible in Fig. 4.

B. Linear ODEs with nonconstant coefficients

Linear (inhomogeneous) differential equations with non-
constant coefficients were the second class of equations used
to benchmark the two approaches. We performed the

043090-5

FLORIANO TORI AND VINCENT GINIS PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

FIG. 4. Examples of the evolution of the L2 validation for two
cases from the equations in Sec. III A. (a) Evolution for the stable
spiral. (b) Evolution for the saddle point.

analysis for six second-order differential equations, giving the
results in Fig. 5. The choice of differential equations had the
goal of including the largest variety in analytical solutions.
For equation in Fig. 5(d), an L2 error of order smaller than

O(10−1) was not obtained by either approach in an initial run
with the original architecture. To remedy this, we changed
the architecture to three hidden layers with each 60 while
training for 12 000 epochs to ensure enough training time for
this deeper and wider network. We note here that we only
did this because both methods did not seem to learn with the
original architecture. The system approaches performed better
for all six differential equations, even obtaining an L2 error
one order of magnitude smaller for equations in Figs. 5(b),
5(c), and 5(d). The difference in performance favored the
system approach even when increasing the training time to
18 000 [or 24 000 for equation in Fig. 5(d)] epochs. We show
these results on the second panel of Fig. 3(b).

C. Nonlinear systems and higher orders

We performed the final part of the analysis of both algo-
rithms with nonlinear equations and differential equations of
higher order. For each category, we selected two problems.
Since the differential equations are more complex, we chose
the architecture with three hidden layers of 60 nodes (trained
during 12 000 epochs). To obtain additional variety in the
higher-order equations, we also ran the second third-order
equation with three different combinations of initial condi-
tions. We chose to train during 24 000 epochs for the longer
training runs. Figure 6 displays all the solutions obtained by
both approaches.

FIG. 5. The 30 solutions of the neural networks, after training for 6000 (or 12 000) epochs to solve the (orange) or the system of
equations (green), together with the analytical solution are displayed. The lower panel shows the average error at each point (line), while the
shaded region indicates one standard deviation. All learning constraints were equal for both approaches, and the initial parameters for each run
were randomly initialized. (a) t ẍ + ẋ = 1. (b) t2ẍ + 5t ẋ + 4x = ln(t). (c) t2ẍ − t ẋ + x = 0. (d) ẍ + 4x = cos(2t) sin(2t). (e) ẍ − tanh(t)x = 0.
(f) t2ẍ − 2t ẋ + x = 0.

043090-6

PHASE SPACE APPROACH TO SOLVING … PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

FIG. 6. The 30 solutions of the neural networks, after training for 6000 (or 12 000) epochs to solve the (orange) or the system of
equations (green), together with the analytical solution are displayed. The lower panel shows the average error at each point (line), while
the shaded region indicates one standard deviation. All learning constraints were equal for both approaches, and the initial parameters for
each run were randomly initialized. (a) ẍ − 1

5 xẋ = 0. (b) ẍ + 2t ẋ2 = 0. (c) ˙̇ ˙x + 2ẍ + ẋ = −2 sin(t). (d)–(f) ˙̇ ˙x + 2ẍ − ẋ − 2x = 0 (with three
different initial conditions).

D. PDEs

The final benchmark of our method was performed with a
PDE, namely, the two-dimensional diffusion equation:

∂y

∂t
= ∂2y

∂x2
− e−t sin(πx)(1 − π2). (8)

We solved this equation for x ∈ [−1, 1], t ∈ [0, 2] and with
the Dirichlet boundary conditions y(t,−1) = y(t, 1) = 0. To
transform Eq. (8) into a system of equations, we define v

.=
∂t y and w

.= ∂xy and obtain

∂t y = v

∂xy = w

∂xw = v + e−t sin(πx)(1 − π2).

The training point for the networks was a 200 × 200 grid.
For this problem, we used an architecture composed of four
hidden layers with 200 hidden nodes each and trained it during
40 000 epochs.

Our results show that the system approach can outperform
the higher-order approach also for PDEs. Figure 7 displays
the results obtained from the networks together with the an-
alytical solution, the evolution of the L2 validation, and the
absolute difference between the results of the networks and
the analytical solution. We can see that the L2 validation for
the system is on average an order of magnitude lower than the
higher-order approach. We further note that the oscillations
in the validation were also visible for the higher-order ap-

proach in other runs and not specific to the system approach.
Although specific conclusions about the performance of the
system approach vs the higher-order approach on problems of
PDEs require another analysis, our results show that the sys-
tem approach can successfully be applied to such problems.

IV. DISCUSSION

The results presented seem to show a difference in per-
formance when training a neural network to solve ODEs or
PDEs, depending on how one formulates the problem. Our
method for analyzing this was by tackling a variety of differ-
ential equations.

We found a slight variation in performance for the linear
systems with constant coefficients but no discernible pattern
dictating which method would perform better based on the
type of phase space considered. Equations on which the sys-
tem approach outperformed the higher-order one still favor the
system approach even with longer training times. The linear
problems with nonconstant coefficients seemed to benefit the
most from using the system approach, as we found that the
system method outperformed the higher-order approach each
time for those cases. This behavior continued even when train-
ing for longer epochs. This behavior was also visible in the
higher-order equations. On the other hand, both approaches
displayed similar results when solving nonlinear equations.
For all problems, both approaches also displayed similar train-
ing times.

043090-7

FLORIANO TORI AND VINCENT GINIS PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

(d)

(a) (b) (c)

(e)

(f)

FIG. 7. Solving the equivalent system instead of the higher-order differential equation can also work for partial differential equa-
tions (PDEs). The data presented originate from one iteration. (a)–(c) Higher-order, system, and analytical results. (d) L2 validation evolution
for the system (green) and the higher-order (orange) approaches. (e) and (f) Absolute difference between the analytical solution and the results
of the networks.

As mentioned in Sec. II, training the network to solve
the system requires optimizing multiple tasks at once. We
can therefore try to understand the performance of this ap-
proach through the lens of multitask learning, especially for
those equations where it performed worse than the higher-
order method. As mentioned in Ref. [44], problems of
negative transfer, where two tasks have conflicting gradients
during learning, are the main challenges when training a
network on more than one task. We can infer the measure
of conflict between two gradients g1 and g2 by comput-
ing the angle between the two and the similarity in their
magnitude [45]:

�(g1, g2) = 2||g1||2||g2||2
||g1||22 + ||g2||22

. (9)

If during a learning epoch we have a combination of both
�(g1, g2) ≈ 1 and a large angle between the gradients, then
the resulting gradient will be close to zero, resulting in a lack
of improvement. To generalize this occurrence of conflict to a
network that is learning more than two tasks, we consider the
nonconflict ratio R, which we define as

R
.=

∣∣∣∣∑n
i gi

∣∣∣∣∑n
i ||gi|| . (10)

The closer R is to one, the fewer conflicts were present when
summing the gradients of the individual tasks. The mean
value of R for the differential equations is displayed in Fig. 3

in the lower panes, together with the relative improvement
of the network between short and long training times. The
value of this relative improvement shows by what factor the
validation at longer training times was reduced. The smaller
the value, the more the network improved between the two
training times. The correlation between both quantities can
indicate that a conflict in gradients is one of the reasons for
the cases where the system approach is slower to learn. Such
a phenomenon means that gradient modification techniques
developed for multitask learning, such as in Refs. [45,46]
could further improve the method. These approaches alter
the individual gradients to remove the conflicting elements
before applying them to the weights, ensuring optimal
learning.

Another approach to optimize learning in the multitask
context is hard parameter sharing [47]. Here, a neural network
is constructed with first a number of hidden layers, shared
among the tasks, followed by hidden layers which are task
specific. This architecture is shown in the upper panel of
Fig. 8. We performed an analysis to see if this method could
also improve the results we obtained for the systems approach.
For this, we solved the differential equations which were
solved previously on the small architecture (with two hidden
layers of 20 nodes).

We chose an architecture with a total maximum of four
hidden layers and analyzed the performance when replacing
one or more common layers by task-specific layers. The com-
mon layers had 40 nodes each, while the task-specific layers

043090-8

PHASE SPACE APPROACH TO SOLVING … PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

(a)

(b)

FIG. 8. (a) Architecture with shared and task-specific layers.
(b) Distribution of the obtained rankings and the averaged obtained
rank (blue line) of the architectures with varying amounts of shared
layers when solving all equations with constant coefficients and five
equations with nonconstant coefficients. Lower is better.

contained 25 nodes. For each equation, we performed 30
random initializations and subsequently compared the mean
L2 error between the varying architectures and ranked the
performance of the architectures from best (rank 1) to worst
(rank 4). To finalize the analysis, we averaged the obtained
rank for each architecture over all the equations and il-
lustrated the results in Fig. 8. The results obtained in our
analysis show that an architecture with one shared layer out-
performs the architecture with no shared layers for some
problems, indicating that these types of architecture can
indeed have a positive effect on learning for the system ap-
proach. The question still stands as to why our technique
generally works better. Our simulations provide a quanti-
tative argument that the performance increase in solving
the system of equations is related to how the errors are
handled during training. For example, the standard higher-
order setting has only one node to approximate both the
function and all its derivatives. This causes errors in the
approximation of the function to influence the errors in its
derivatives. In contrast, the system of equations approach
introduced in this paper optimizes all errors individually, as
they appear independently in the loss function, making it
easier to change the error of one output without affecting the
others.

Another important aspect to consider when choosing one
of these methods is the setup of the trial function. Although
the functions in the trial function are only there to ensure it
satisfies the initial and boundary conditions, these functions
impact the learning capacity of the network, as the entire
trial function appears in the loss term. In the higher-order
approach, these two functions need to encompass all initial
conditions, making them often higher-order polynomials. In
contrast, the trial functions for the system approach only
encompass the conditions imposed on a particular order of
the derivative. The simplest choice, in that case, is often
a linear function. This is important for two reasons. First,
it simplifies the construction of the trial function, making
this method more straightforward to use. Second, this al-
lows us to fine-tune the constraining function based on the
problem. In Ref. [48], a constraining function C(t,N) =
(1 − e−t)N (t, θ) is used, as it tends to 1 when t takes on
large values. The authors show empirically that this choice
of function drastically improves the capacity of the network
to learn. Choosing such a function is only possible when
the constraints originating from the initial conditions allow
it. As the trial functions of the system approach are sub-
ject to fewer constraints, it is easier to optimize the choice
of C(t,N).

V. CONCLUSIONS

Neural networks are universal function approximators,
which means that, given sufficient hidden nodes, any func-
tion can be modeled up to an error ε. This property allows
us to use neural networks to learn solutions to differential
equations. In this paper, we investigated the influence of the
problem formulation on the learning capacity of the network.
Our experiments show that, for most problems we ran, neural
networks indeed perform better when presented with a dif-
ferential equation formulated as a system of equations. Our
analysis covered a total of 20 ODEs with various characteris-
tics. Additionally, we showed that our methods can also work
for PDEs. In this paper, we also looked at the role of multi-
task learning elements in the system approach. Analyzing our
results through this lens indicated the presence of conflicting
gradients during training for some of the problems that we
tackled. Therefore, future efforts could focus on implement-
ing gradient modification algorithms to ensure that learning
occurs optimally in all cases.

Our results also show that future work studying the trial
function itself could significantly improve the use of neu-
ral networks as differential equation solvers. As the system
approach imposes fewer constraints on its trial functions, it
is easier to implement functions that benefit learning. Com-
bined, these efforts will also lead to a more comprehensive
understanding of PINNs methods, ensuring greater reliability
when solving future tasks.

ACKNOWLEDGMENTS

Work at VUB was partially supported by the Research
Foundation Flanders under Grants No. G032822N and
No. G0K9322N and by the research council of the VUB.
This article was published with the support of the University
Foundation of Belgium.

043090-9

FLORIANO TORI AND VINCENT GINIS PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classi-
fication with deep convolutional neural networks, in Advances
in Neural Information Processing Systems, Vol. 25, edited by
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Curran Associates, Inc., Red Hook, 2012).

[2] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O.
Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A.
Potapenko et al., Highly accurate protein structure prediction
with AlphaFold, Nature (London) 596, 583 (2021).

[3] D. Bourilkov, Machine and deep learning applications in parti-
cle physics, Int. J. Mod. Phys. A 34, 1930019 (2019).

[4] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey,
Predicting the sequence specificities of DNA- and RNA-
binding proteins by deep learning, Nat. Biotechnol. 33, 831
(2015).

[5] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, Explainable
machine learning for scientific insights and discoveries, IEEE
Access 8, 42200 (2020).

[6] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S.
Giesselbach, R. Heese, B. Kirsch, M. Walczak, J. Pfrommer,
A. Pick et al., Informed machine learning—a taxonomy and
survey of integrating prior knowledge into learning systems, in
IEEE Transactions on Knowledge and Data Engineering (IEEE,
2021).

[7] I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural
networks for solving ordinary and partial differential equations,
IEEE Trans. Neural Netw. 9, 987 (1997).

[8] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S.
Wang, and L. Yang, Physics-informed machine learning, Nat.
Rev. Phys. 3, 422 (2021).

[9] A. Mathews, M. Francisquez, J. W. Hughes, D. R. Hatch, B.
Zhu, and B. N. Rogers, Uncovering turbulent plasma dynamics
via deep learning from partial observations, Phys. Rev. E 104,
025205 (2021).

[10] M. L. Piscopo, M. Spannowsky, and P. Waite, Solving dif-
ferential equations with neural networks: applications to the
calculation of cosmological phase transitions, Phys. Rev. D 100,
016002 (2019).

[11] S. Cai, Z. Wang, F. Fuest, Y. J. Jeon, C. Gray, and G. E.
Karniadakis, Flow over an espresso cup: inferring 3-D veloc-
ity and pressure fields from tomographic background oriented
Schlieren via physics-informed neural networks, J. Fluid Mech.
915, 1 (2021).

[12] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedfor-
ward networks are universal approximators, Neural Networks
2, 359 (1989).

[13] D. Psichogios and L. Ungar, A hybrid neural network-first
principles approach to process modeling, AIChE J. 38, 1499
(1992).

[14] S. Mishra and R. Molinaro, Estimates on the generalization
error of physics-informed neural networks for approximating
PDEs, IMA J. Numer. Anal. 42, 981 (2022).

[15] Y. Shin, J. Darbon, and G. E. Karniadakis, On the convergence
of physics informed neural networks for linear second-order
elliptic and parabolic type PDEs, Commun. Comput. Phys. 28,
2042 (2020).

[16] S. Wang, X. Yu, and P. Perdikaris, When and why PINNs fail to
train: a neural tangent kernel perspective, J. Comput. Phys. 449,
110768 (2022).

[17] S. Wang, Y. Teng, and P. Perdikaris, Understanding and mit-
igating gradient flow pathologies in physics-informed neural
networks, SIAM J. Sci. Comput. 43, A3055 (2021).

[18] S. Wang, H. Wang, and P. Perdikaris, On the eigenvector bias
of Fourier feature networks: from regression to solving multi-
scale PDEs with physics-informed neural networks, Comput.
Methods Appl. Mech. Eng. 384, 113938 (2021).

[19] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent ker-
nel: convergence and generalization in neural networks,
arXiv:1806.07572 (2018).

[20] G. Yang, Scaling limits of wide neural networks with weight
sharing: Gaussian process behavior, gradient independence, and
neural tangent kernel derivation, arXiv:1902.04760 (2019).

[21] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F.
Hamprecht, Y. Bengio, and A. Courville, On the spectral bias
of neural networks, in Proceedings of the 36th International
Conference on Machine Learning, 9–15 June 2019, Long Beach,
California, USA, Proceedings of Machine Learning Research,
Vol. 97, edited by K. Chaudhuri and R. Salakhutdinov (PMLR,
2019), pp. 5301–5310.

[22] Y. Cao, Z. Fang, Y. Wu, D.-X. Zhou, and Q. Gu, Towards
understanding the spectral bias of deep learning, in Proceedings
of the Thirtieth International Joint Conference on Artificial
Intelligence Montreal, 19–27 August 2021, edited by Z.-H. Zhou
(IJCAI, 2021), pp. 2205–2211, main Track.

[23] O. Fuks and H. A. Tchelepi, Limitations of physics informed
machine learning for nonlinear two-phase transport in porous
media, J. Mach. Learn. Model. Comput. 1, 19 (2020).

[24] M. Raissi, Deep hidden physics models: deep learning of non-
linear partial differential equations, J. Mach. Learn. Res. 19, 1
(2018).

[25] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris,
Physics-constrained deep learning for high-dimensional surro-
gate modeling and uncertainty quantification without labeled
data, J. Comput. Phys. 394, 56 (2019).

[26] A. D. Jagtap and G. Em Karniadakis, Extended physics-
informed neural networks (XPINNs): a generalized space-time
domain decomposition based deep learning framework for non-
linear partial differential equations, Commun. Comput. Phys.
28, 2002 (2020).

[27] B. Moseley, A. Markham, and T. Nissen-Meyer, Finite ba-
sis physics-informed neural networks (FBPINNs): A scalable
domain decomposition approach for solving differential equa-
tions, arXiv:2107.07871 (2021).

[28] W. Cai, X. Li, and L. Liu, A phase shift deep neural network
for high frequency approximation and wave problems, SIAM J.
Sci. Comput. 42, A3285 (2020).

[29] B. Wang, Multi-scale deep neural network (MscaleDNN) meth-
ods for oscillatory Stokes flows in complex domains, Commun.
Comput. Phys. 28, 2139 (2020).

[30] Z. Liu, W. Cai, and Z.-Q. J. Xu, Multi-scale deep neural net-
work (MscaleDNN) for solving Poisson-Boltzmann equation in
complex domains, Commun. Comput. Phys. 28, 1970 (2020).

[31] X.-A. Li, A multi-scale DNN algorithm for nonlinear elliptic
equations with multiple scales, Commun. Comput. Phys. 28,
1886 (2020).

[32] L. Yang, X. Meng, and G. E. Karniadakis, B-PINNs: Bayesian
physics-informed neural networks for forward and inverse PDE
problems with noisy data, J. Comput. Phys. 425, 109913 (2021).

043090-10

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1142/S0217751X19300199
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/72.712178
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1103/PhysRevE.104.025205
https://doi.org/10.1103/PhysRevD.100.016002
https://doi.org/10.1017/jfm.2021.135
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1002/aic.690381003
https://doi.org/10.1093/imanum/drab093
https://doi.org/10.4208/cicp.OA-2020-0193
https://doi.org/10.1016/j.jcp.2021.110768
https://doi.org/10.1137/20M1318043
https://doi.org/10.1016/j.cma.2021.113938
http://arxiv.org/abs/arXiv:1806.07572
http://arxiv.org/abs/arXiv:1902.04760
https://doi.org/10.1615/JMachLearnModelComput.2020033905
https://www.jmlr.org/papers/volume19/18-046/18-046.pdf
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.4208/cicp.OA-2020-0164
http://arxiv.org/abs/arXiv:2107.07871
https://doi.org/10.1137/19M1310050
https://doi.org/10.4208/cicp.OA-2020-0192
https://doi.org/10.4208/cicp.OA-2020-0179
https://doi.org/10.4208/cicp.OA-2020-0187
https://doi.org/10.1016/j.jcp.2020.109913

PHASE SPACE APPROACH TO SOLVING … PHYSICAL REVIEW RESEARCH 4, 043090 (2022)

[33] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, Learn-
ing nonlinear operators via DeepONet based on the universal
approximation theorem of operators, Nat. Mach. Intell. 3, 218
(2021).

[34] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, and
G. E. Karniadakis, A comprehensive and fair comparison of two
neural operators (with practical extensions) based on FAIR data,
Comput. Methods Appl. Mech. Eng. 393, 114778 (2022).

[35] S. Wang, H. Wang, and P. Perdikaris, Learning the solu-
tion operator of parametric partial differential equations with
physics-informed DeepONets, Sci. Adv. 7, eabi8605 (2021).

[36] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu,
K. Azizzadenesheli, and A. Anandkumar, Physics-informed
neural operator for learning partial differential equations,
arXiv:2111.03794 (2021).

[37] C. Leake and D. Mortari, Deep theory of functional connec-
tions: A new method for estimating the solutions of partial
differential equations, Mach. Learn. Knowl. Extr. 2, 37 (2020).

[38] J. Berg and K. Nyström, A unified deep artificial neural network
approach to partial differential equations in complex geome-
tries, Neurocomputing 317, 28 (2018).

[39] L. Perko, Differential Equations and Dynamical Systems,
3rd ed. (Springer, New York, 2002), pp. 74–77.

[40] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.
Siskind, Automatic differentiation in machine learning: a sur-
vey, J. Mach. Learn. Res. 18, 1 (2018).

[41] D. P. Kingma and J. Ba, ADAM: a method for stochastic opti-
mization, arXiv:1412.6980 (2014).

[42] P. Ramachandran, B. Zoph, and Q. V. Le, Searching for activa-
tion functions, arXiv:1710.05941 (2017).

[43] S. Strogatz, Nonlinear Dynamics and Chaos: With Applications
to Physics, Biology, Chemistry, and Engineering (CRC Press,
Boca Raton, 2018), p. 138.

[44] M. Crawshaw, Multi-task learning with deep neural networks:
a survey, arXiv:2009.09796 (2020).

[45] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn,
Gradient surgery for multi-task learning, in Advances in Neural
Information Processing Systems 33, edited by H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Curran
Associates, Inc., Red Hook, 2020), pp. 5824–5836.

[46] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu, Conflict-averse
gradient descent for multi-task learning, in Advances in Neural
Information Processing Systems 34, edited by M. Ranzato, A.
Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan
(Curran Associates, Inc., Red Hook, 2021), pp. 18878–18890.

[47] R. Caruana, Multitask learning: a knowledge-based source of
inductive bias, in Proceedings of the Tenth International Con-
ference on Machine Learning (Morgan Kaufmann Publishers
Inc., San Francisco, 1993), pp. 41–48.

[48] M. Mattheakis, D. Sondak, A. S. Dogra, and P. Protopapas,
Hamiltonian neural networks for solving equations of motion,
Phys. Rev. E 105, 065305 (2022).

043090-11

https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1016/j.cma.2022.114778
https://doi.org/10.1126/sciadv.abi8605
http://arxiv.org/abs/arXiv:2111.03794
https://doi.org/10.3390/make2010004
https://doi.org/10.1016/j.neucom.2018.06.056
https://www.jmlr.org/papers/volume18/17-468/17-468.pdf
http://arxiv.org/abs/arXiv:1412.6980
http://arxiv.org/abs/arXiv:1710.05941
http://arxiv.org/abs/arXiv:2009.09796
https://doi.org/10.1103/PhysRevE.105.065305

